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Abstract 

 
Background and purpose: One of the most prevalent types of malignancies affecting the cells in the mucosal 
surface of the oral cavity and pharynx regions is head and neck squamous cell carcinoma (HNSCC). This study 
analyzed the metabolic profile of genes involved in the metabolism of fatty acids (FAs) to identify biomarkers 
with prognostic and diagnostic potential in HNSCC. 
Experimental approach: Gene set enrichment analysis, differential gene expression, and correlation analysis 
methods were used to examine the enrichment and expression patterns of genes involved in the metabolism of 
FAs in the HNSCC tissue samples. Gene ontology and network analysis were performed to explore the 
molecular interactions in the metabolic pathways of FAs. The diagnostic and prognostic potentials of identified 
highly dysregulated genes in HNSCC were examined by ROC test and Cox-regression methods. 
Findings/Results: FA-associated metabolic pathways were significantly dysregulated in the HNSC cancer 
samples. For the diagnosis of HNSC cancer, CYP4B1 and FMO2 could be potential biomarkers, while for the 
prognosis of HNSCC survival periods, ACOX2, CYP4F12, and ELOVL6 could hold valuable biomarker 
potential. 
Conclusion and implications: The findings could help target the metabolism of FAs using the identified 
biomarkers for the design of new therapeutic opportunities for patients with HNSCC. 
 
Keywords: CYP4B1; Diagnosis; ELOVL6; Fatty acid metabolism; FMO2; Head and neck squamous cell 
carcinoma; Prognosis. 

 
INTRODUCTION 

 
The head and neck cancers (HNCs), as the 

7th most common type of cancer with a high 
diagnosis rate globally, arise from the lining of 
cells in the mucosal layer of the larynx, 
pharynx, and oral cavity regions. Each year, 
more than 900,000 cases are reported to be 
diagnosed with HNCs. The low survival 

periods and unknown molecular background of 
HNCs have influenced the need for further 
investigation on HNCs (1-3). The metabolic 
profile of a variety of cancers has shown a great 
diversity and alterations at transcriptional and 
translational levels concerning the type and 
etiology of cancer cells.  
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The metabolism of fatty acids (FAs) is one 
of the critical parts of cancer cell metabolism 
that highly impacts the optimal productivity, 
membrane integrity, cellular development, and 
survival of the cancer cells (4-6). 

FAs are an important part of cellular 
metabolic building blocks that are highly used 
by cancer cells due to their initial role in the 
synthesis of lipid molecules, regulation of 
cellular signaling pathways, and energy 
production that aids cellular growth and 
development. The metabolism of FAs includes 
a wide range of enzymatic reactions, including 
the biosynthesis, elongation, modification, 
activation, catabolism, and homeostasis of FAs 
in cells, which all play a vital role in the 
progression and survival of cancer cells (7,8). 

The metabolic profile of tumor cells can 
change according to environmental conditions 
and cellular growth rate, and the regulation of 
homeostasis and metabolism FAs is critical for 
the optimal progression of cancer cells. 
Therefore, a clear understanding of the 
interconnectivity and the expression profile of 
FA-associated metabolic pathways could 
provide useful insights for the development of 
new personalized therapeutic approaches that 
rely on targeting the metabolism of FAs based 
on the metabolic profile of each patient 
diagnosed with cancer (9-12). 

Multiple studies have investigated the 
impact of fatty acid oxidation (FAO) and fatty 
acid metabolism (FAM) in the oncogenesis, 
progression, and development of human cancer 
cells, such as liver, colorectal, and breast 
cancer. Recent investigations have highlighted 
the impact of FAO in cancer cells, particularly 
in the development of drug resistance. FAO has 
been found to support the synthesis of cellular 
DNA in endothelial cells, indicating that the 
inhibition of the FAO pathway could 
potentially help with inhibiting tumor 
angiogenesis by targeting the endothelial cells 
in blood vessels that nourish tumor cells 
(4,13,14). These findings suggest that blocking 
FAO could be a promising strategy to overcome 
drug resistance and hinder tumor growth (13). 
Multiple genes, including fatty acid synthase 
(FASN), ATP citrate lyase (ACLY), and acetyl-
CoA carboxylase (ACC), involved in the 
metabolism of FAs, have been identified as 

effective targets for inhibiting cancer 
progression (15). By disrupting the metabolism 
of FAs in cancer cells, it is possible to 
potentially inhibit their growth and reduce the 
risk of resistance (16). However, further 
research is needed to fully understand the 
complexities of FAM in different cancer types 
and develop effective therapies that can be 
converted into clinical practice (17). While 
multiple studies have reported a dysregulated 
expression pattern in the cellular metabolic 
pathways in the head and neck squamous cell 
carcinoma (HNSCC) (18-21), there is a great 
lack of knowledge regarding the expression 
profile of molecular pathways involved in the 
metabolism of FAs in HNSCC patients. 

In the current study, we analyzed the 
expression profile of HNSCC tumor and control 
tissue samples to identify the enrichment 
pattern and expression profile of genes involved 
in varying pathways that participated in the 
metabolism of FAs by the help of 
bioinformatics, and the interaction between 
these genes and their molecular functions was 
predicted as well. Based on the expression 
patterns of HNSCC patients, we introduced 
high-potential biomarkers for the diagnosis and 
prognosis of HNSCC that could encourage 
future investigations for the development of 
better personalized treatment approaches. 
 

MATERIALS AND METHODS 
 

Data processing and gene expression analysis 
The RNA-seq count data of 502 HNSCC 

tissue samples along 44 normal adjacent tissue 
samples were downloaded from the Cancer 
Genome Atlas (TCGA) online platform 
(www.doc.gdc.cancer.goc/), concerning the 
principles of Helsinki. The count data were 
converted into logarithmic format after 
normalization with the Voom package and 
subjected to differential gene expression 
analysis with the help of TCGAbiolinks, 
Limma, and edgeR packages in R programming 
software (Version 4.2.3) to identify the most 
differentially expressed genes (DEGs) involved 
in the FAM of HNSCC (22-24). The clinical 
information of the TCGA HNSCC patients has 
been summarized in Table S1. For further 
validation of the differential gene expression 
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results, the expression data of GSE58911                 
with 15 HNSC cancer samples and 15                 
normal tissue samples were downloaded                 
from the Gene Expression Omnibus (GEO) 
dataset (https://www.ncbi.nlm.nih.gov/geo) 
and analyzed using the GEO2R tool 
(https://www.ncbi.nlm.nih.gov/geo/geo2r/) 
(25). 
 
Gene set enrichment analysis 

Gene set enrichment analysis (GSEA) is a 
commonly used approach for the estimation of 
correlation ratio between the expression levels 
of a specific gene set that plays a common 
molecular function in a biological pathway in 
the interest disease phenotype. This analysis 

was performed using the GSEA software 
(version 4.0.3) developed by the Broad 
Institute, with 5 different gene sets downloaded 
from MSigDB (www.gsea-msig.org/) that were 
associated with the metabolic reactions of              
FAs, such as the elongation, catabolism, 
homeostasis, biosynthesis, and the metabolism 
of FAs (26,27). The normalized expression data 
of HNSCC samples were utilized along with 
normal adjacent tissues as the expression 
dataset for GSEA. The t-test statistical 
approach was set for the calculation of metric 
ranking scores based on the correlation of gene 
expression levels and defined sample 
phenotypes, and the rest of the parameters were 
set as default. 

 
Table S1. Summary statistics and distribution of variables in the study population. Descriptive statistics were elucidated 
in terms of the median with its corresponding interquartile range (IQR) for numeric variables, while categorical 
variables were conveyed by their respective frequencies and associated percentages. 

Variables Levels Median (IQR)/frequency (%) 

Days to last follow-up ----- 616.15 (171.75, 847.25) 
Days to death ----- 747.85 (215.50, 800.25) 
Tobacco smoking history ----- 2.46 (2.00, 4.00) 
Year of tobacco smoking onset ----- 1967.31 (1959.00, 1975.00) 
Stopped smoking year ----- 1997.25 (1989.75, 2009.00) 
Number pack years smoked ----- 45.75 (25.00, 60.00) 
Amount of alcohol consumption per day ----- 3.24 (0.00, 5.00) 

Anatomic neoplasm subdivision 

Alveolar ridge 18 (3.41) 
Base of tongue 27 (5.11) 
Buccal mucosa 23 (4.36) 
Floor of the mouth 63 (11.93) 
Hard palate 7 (1.33) 
Hypopharynx 10 (1.89) 
Larynx 117 (22.16) 
Lip 3 (0.57) 
Oral cavity 73 (13.83) 
Oral tongue 133 (25.19) 
Oropharynx 9 (1.70) 
Tonsil 45 (8.52) 

Gender 
Male 386 (73.11) 
Female 142 (26.89) 

Vital status 
Alive 358 (67.80) 
Dead 170 (32.20) 

Clinical stage 

Stage I 21 (3.98) 
Stage II 99 (18.75) 
Stage III 107 (20.27) 
Stage IVA 269 (50.95) 
Stage IVB 11 (2.08) 
Stage IVC 7 (1.33) 
NA 14 (2.65) 

HPV status 

[Not evaluated] 114 (21.59) 
[Unknown] 8 (1.52) 
Negative 74 (14.02) 
Positive 41 (7.77) 
NA 291 (55.11) 

Alcohol history documented 
No 165 (31.25) 
Yes 352 (66.67) 
NA 11 (2.08) 
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Gene expression and correlation analysis 

To clarify the expression patterns of the 
genes involved in the metabolism pathways of 
FAs with significant enrichment in HNSCC 
tissues, differential gene expression analysis 
was performed. The log2 expression levels and 
log2 of fold-change values were calculated for 
the top 10 genes with the highest metric ranking 
scores, and graphs were created using the 
GraphPad Prism software (version 9.1.0). For 
better understanding the correlation between 
the expression levels of best enriched genes in 
FAM pathways, correlation analysis was 
performed using the metan package in R 
programming software, following the Pearson 
statistical method for the calculation of 
correlation scores between the selected genes. 
The P-values < 0.01 were considered 
statistically notable for assessing differential 
gene expression levels (23,24,26,28,29). 
 
Gene ontology and protein-protein interaction 
analysis 

To achieve a better perspective over the 
molecular interactions between genes involved 
in FAs- FAs-associated metabolic pathways, 
the protein-protein interaction (PPI) network 
analysis was performed using the STRING 
database (www.string-db.org, version 10) 
(30,31) available in Cytoscape software 
(www.cytoscape.org, version 3.2.0) (32,33), 
and the threshold of interaction scores was set 
to a confidence range of 0.70. The best 
interactive genes in the generated PPI network 
were analyzed based on degree scores 
calculated with the CytoNCA application 
available in Cytoscape software (www.apps-
cytoscape.org/apps/cytocna) (34,35). The Gene 
Ontology (GO) is a freely available database 
widely used in bioinformatics to annotate gene 
functions, cellular locations, and biological 
processes, and researchers can use this database 
to analyze and interpret large-scale genomic 
data, such as gene expression profiles and 
protein interactions. The GO analysis was                  
also done for all genes in the selected gene                     
sets from the metabolic pathways of FAs to 
explore the most enriched molecular functions 
and pathways in which a large number of genes 
are involved. GO analysis was performed                          

by the DAVID database (www.David-
d.ncifcrf.gov, version 6.8) (36,37), and the 
generated results were ordered according to the 
largest count of genes to the smallest gene 
counts associated with each molecular and 
biological term. 
 
Receiver operating characteristic test 

To assess the diagnostic potential of the top 
metric-ranked genes from the metabolic 
pathways of FAs enriched in HNSCC samples, 
the receiver operating characteristic (ROC) 
curve was created based on the normalized 
expression data of the genes in HNSCC. The 
ROC curves were generated by GraphPad 
Prism software (version 9.1.0). The 
significance of the diagnostic power of genes 
was compared based on the generated area 
under the curve (AUC) and P-values. 

 
Cox-regression analysis 

The prognostic biomarker potential of the 
top-ranked genes was estimated in HNSCC 
patients with the help of the OncoLnc online 
database (www.oncolnc.org), which used the 
Cox-regression statistical approach to calculate 
the risk correlation between the gene expression 
levels and survival of HNSCC TCGA patients 
based on their clinical information. The 
prognostic capability of the top enriched genes 
in FAM pathways was compared based on the 
Cox-regression coefficient and log-rank P-
values (38,39). 
 

RESULTS 
 
GSEA analysis of FA-associated pathways in 
HNSCC 

A practical approach for analyzing the 
enrichment patterns of genes with molecular 
functions associated with FAM is GSEA 
analysis, which is based on the Kolmogorov-
Smirnov statistical method that gives an overall 
view of the cumulative distribution of the genes 
based on their expression levels. The results of 
GSEA analysis could be compared based on the 
reported metric ranking scores or enrichment 
scores (ES), which were based on a permutation 
analytical approach that reported a false 
discovery rate (FDR) value as well. The cut-off 
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value for FDR q-values was set to 0.25, and the 
gene sets with FDR q-values below 0.25 were 
considered notably enriched. In this study, 5 
different gene sets associated with FAM were 
selected for GSEA analysis in HNSCC. As 
shown in Fig. 1, all the gene sets including FA 
biosynthetic process (normalized enrichment 
score (NES) = -1.52, FDR = 0.016), FA 
catabolic process (NES = -2.03, FDR = 0.00), 
FA homeostasis pathway (NES = -0.90, FDR = 
0.571), and FA metabolic process (NES = -
1.96, FDR = 0.00) had a negative NES, except 
for the FA elongation process (NES = 0.57, 
FDR = 0.964) that demonstrated a positive 
NES. However, according to the FDR                        
cut-off value, the FA biosynthetic process,                    
FA catabolic process, and FA metabolic 
process were notably enriched in HNSC                

cancer samples. Genes including pyruvate 
dehydrogenase kinase 4 (PDK4) (ES = -8.86), 
carcinoembryonic antigen-related cell adhesion 
molecule 1 (CEACAM1) (ES = -11.59), acyl-
CoA oxidase 2 (ACOX2) (ES = -8.87), 
cytochrome P450 family 4 subfamily F member 
12 (CYP4F12) (ES = -10.92), ELOVL fatty 
acid elongase 6 (ELOVL6) (ES = -5.64), 
diacylglycerol O-acyltransferase 2 (DGAT2) 
(ES = -5.21), protein kinase AMP-activated 
catalytic subunit alpha 2 (PRKAA2) (ES = -
8.31), cytochrome P450 family subfamily B 
member 1 (CYP4B1) (ES = -17.04), and flavin-
containing dimethylaniline monooxygenase 2 
(FMO2) (ES = -17.99) demonstrated the 
highest ES among the members of the gene sets 
and were selected for next analyses. 

 

 
 
Fig. 1. GSEA of FA metabolism-associated pathways in head and neck squamous cell carcinoma. The enrichment pattern 
of gene sets involved in 5 different pathways associated with FA metabolism, catabolism, biosynthesis, homeostasis, and 
elongation processes was analyzed by the GSEA method using the normalized expression data of tissue samples from 
patients with HNSC cancer. Healthy tissues were considered the control group. (A) The enrichment plot, (B) score plots 
representing the ranked metric scores (tTest) obtained from GSEA analysis, and (C) heatmaps of enriched genes in cancer 
and normal tissue samples, colored according to the Z score. Gene sets with FDR q-values below 0.25 are considered 
significantly enriched. GSEA, Gene set enrichment analysis; FA, fatty acid; NES, normalized enrichment score; FDR, 
false discovery rate.  
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Downregulated expression pattern of FAM in 
HNSCC 

The differential expression analysis of Log2 
expression levels of the top-ranked genes from 
FA-associated metabolic pathways using 
TCGA samples, demonstrated the highest ES 
by GSEA analysis in the HNSCC tissues 
revealed that all of the genes except ATP 
binding cassette subfamily D member 1 
(ABCD1) (P < 0.001) were downregulated 
significantly in HNSC cancer samples 
compared to normal tissue samples (Fig. 2). 
Two genes including CYP4B1 (P < 0.001) and 
FMO2 (P < 0.001) demonstrated the most down 
regulated levels compared to rest of the genes, 
such as CYP4F12 (P < 0.001) and PDK4                      
(P < 0.001) that also had relative significant 
down regulation in TCGA HNSC cancer 
samples (Fig. 2). The differential expression 

levels of the top-ranked genes were also 
checked in GSE29330 HNSC cancer                   
samples compared to the paired normal                   
tissue samples, and all the top-ranked selected 
genes from GSEA analysis showed notable 
negative expression levels in cancer samples, 
including ELOVL6 (Log2 FC = -0.189,                   
P = 0.003), PDK4 (Log2 FC = -0.224,                   
P = 0.004), ACOX2 (Log2 FC = -0.143,                   
P = 0.0005), CYP4F12 (Log2 FC = -0.331,                   
P = 0.00006), DGAT2 (Log2 FC = -0.099,                   
P = 0.01), PRKAA2 (Log2 FC = -0.154,                   
P = 0.05), CYP4B1 (Log2 FC = -0.30,                   
P = 0.0007), FMO2 (Log2 FC = -0.28,                   
P = 0.02), except CEACAM1 (Log2                   
FC = 0.013, P = 0.720), and ABCD1 (Log2                  
FC = -0.049, P = 0.220), which their expression 
level did not significantly differ between cancer 
and normal tissue samples. 

 

 
 
Fig. 2. Differential gene expression analysis of the top 10 enriched scored genes in fatty acid metabolic pathways in 
TCGA head and neck squamous cell carcinoma. Cancer and normal tissue samples were shown with red and blue colors, 
respectively. P < 0.001 revealed a significant difference between cancer and normal tissue samples.  
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Fig. 3. Correlation analysis between top enriched genes from FA metabolism in HNSCC. The relationship between the 
expression levels of the top selected enriched genes from FA metabolic pathways in the HNSCC expression data were 
analyzed by Pearson correlation method. *P < 0.05, **P < 0.01, and ***P < 0.001 revealed significant differences. FA, 
Fatty acid; HNSCC, head and neck squamous cell carcinoma; ns, non-significant.  
 

Genes that were grouped under similar 
biological pathways shared great connectivity 
and expressional correlations at the 
transcriptional level for the better maintenance 
of optimal cellular productivity. The pathways 
involved in the metabolism of FAs were also 
expected to co-regulate each other at the 
transcriptional level. To estimate the degree of 
correlation between the genes, correlation 
analysis was performed. As depicted in Fig. 3, 
the expression level of the CYP4B1 gene 
positively correlated with the expression levels 
of CYP4F12 (correlation coefficient = 0.51,              
P = 3.62 E-35) and CEACAM1 (correlation 
coefficient = 0.45, P = 2.63 E-26). The PDK4 

expression level with PRKAA2 (correlation 
coefficient = 0.55, P = 6.60 E-41) correlated 
positively as well. A negative correlation was 
also detected between the expression levels of 
ELOVL6 and DGAT2 (correlation coefficient 
= -0.27, P = 1.12 E-09), which indicated that a 
possible negative regulatory mechanism at the 
transcriptional level might exist between the 
genes in HNSCC cells. 
  
Identification of highly enriched pathways in 
FAM 

The GSEA analysis of the selected gene sets 
involved in FAM using HNSCC expression 
data informs us about the enrichment patterns 
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of genes in each pathway, while giving no 
insight about the possible molecular 
interactions between the enriched genes. To 
achieve this insight, the PPI network was 
constructed using the complete gene list of all 
FAM pathways chosen for this study. As 
depicted in Fig. 4, all genes demonstrated 
notable interconnectivity with each other. The 
genes with higher co-expression values were 
colored orange, and genes with lower                         
co-expression values estimated by the STRING 
database were colored blue. Also, the nodes that 
demonstrated the highest degree scores and 
interconnectivity have been colored pink 
according to the CytoNCA results. The 
topological parameters of the generated PPI 

network were assessed by the CytoNCA tool. 
Table 1 includes the top 20 interacting genes 
with the highest degree scores. The genes, 
including acyl-CoA oxidase 1 (ACOX1), 
peroxisome proliferator-activated receptor 
alpha (PPARA), acetyl-CoA acyltransferase 1 
(ACAA1), FASN, and cytochrome P450 2E1 
(CYP2E1) represented the best degree scores 
compared to the list of other genes involved in 
the metabolic pathways of FA. Also, ACOX1 
and PPARA genes demonstrated the highest 
degree and betweenness scores compared to the 
rest of the genes, and the highest network score 
belonged to the ACOX1 gene. Therefore, it can 
be concluded that ACOX1 and PPARA play a 
notable role in the generated PPI network. 

 

 
Fig. 4. PPI analysis between FAM-associated pathways. The PPI network was generated by the data retrieved from the 
STRING database into the Cytoscape software using the edge-weighted spring-embedded layout for the demonstration 
of the interconnectivity and interactions between the proteins involved in FAM. Genes have been colored based on their 
co-expression scores from blue to orange, and the top 20 genes that demonstrated the highest interconnectivity by 
CytoNCA application have been colored pink for better visualization. PPI, Protein-protein interaction; FAM, fatty acid 
metabolism. 
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Fig. 5. Functional enrichment analysis of FA metabolism-associated genes. The Gene Ontology terms of the list of genes 
involved in FA metabolic pathways were retrieved from the DAVID database to identify the top-enriched biological 
processes and pathways with the largest gene counts involved. FA, Fatty acid. 
 

To have a better understanding of the 
molecular functions and pathways that involve 
the largest number of genes from FAM gene 
sets, GO analysis was performed. As depicted 
in Fig. 5, more than 90 genes were predicted to 
be involved in fatty acid metabolic process 
(GO: 0006631), and the molecular functions of 
most of them were associated with identical 

protein binding (GO: 0042802), ATP binding                
(GO: 0005524), and iron binding (GO:0005506), 
which indicated the importance of these molecular 
functions in the metabolic pathways of FAs.                
The cellular component of a majority of the 
genes was predicted in cytosol (GO: 0005829), 
integral component of the membrane (GO: 
0016021), and cytoplasm (GO: 0005737).                      

Table 1. Top 20 genes with the highest degree scores in the protein-protein interaction network calculated by 
the CYTOCNA application. 
Gene ID Subgraph Degree Eigenvector Betweenness Closeness Network 
ACOX1 1.46 E+09 128 0.27 13366 0.12 85 
PPARA 2.24 E+08 108 0.1 21456 0.12 48 
ACAA1 1.00 E+09 96 0.22 4037 0.12 62 
FASN 2.77 E+08 94 0.12 7719 0.12 47 
CYP2E1 6.80 E+08 92 0.02 3343 0.11 67 
SCP2 5.53 E+08 86 0.17 4181 0.12 49 
ACOX3 9.11 E+08 80 0.21 3556 0.12 48 
CYP3A4 4.15 E+08 76 0.02 3469 0.11 54 
HADHB 8.32 E+08 74 0.2 873 0.11 51 
CYP2C9 5.85 E+08 74 0.02 1238 0.11 55 
PTGS2 3.47 E+08 74 0.02 8018 0.12 50 
ACAA2 8.56 E+08 72 0.21 656 0.11 53 
ACSL1 2.91 E+08 72 0.12 4569 0.12 33 
ACACA 1.81 E+08 72 0.1 6393 0.12 35 
PTGS1 3.30 E+08 70 0.02 1953 0.11 49 
EHHADH 7.13 E+08 68 0.19 2610 0.12 41 
ACADS 5.94 E+08 68 0.17 4543 0.11 39 
CYP2B6 5.70 E+08 68 0.02 624 0.11 50 
HPGDS 3.05 E+08 68 0.01 1381 0.11 47 
SREBF1 8.24 E+07 66 0.06 3967 0.12 35 
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The Kyoto Encyclopedia of Genes and 
Genomes (KEGG) is a freely available database 
that provides useful information on metabolic 
pathways, regulatory networks, and molecular 
interactions, as well as the relationships 
between genes, proteins, and biological 
processes (40,41). The KEGG pathway analysis 
of the gene list suggested that a large number of 
genes participated in metabolic pathways 
(has01100), fatty acid metabolism (hsa01212), 
arachidonic acid metabolism (hsa00590), and 
peroxisome proliferator-activated receptor 
(PPAR) signaling (hsa03320). 
 
Diagnostic potential of FA-associated genes in 
HNSCC 

ROC curves are graphical approaches for the 
better comparison of the performance of 
various genes in the diagnosis and classification 
of cancer phenotype from normal tissue 
phenotype. For this test, the normalized 
expression data of the top-enriched genes in 
FAM were used to assess their diagnostic 
capability in the HNSCC. As shown in Fig. 6, 
all of the genes represented a notable diagnostic 

potential. However, CYP4B1 (AUC = 0.95) 
and FMO2 (AUC = 0.94) genes performed 
much stronger compared to the rest of the genes 
and could be good candidates for early 
diagnosis and screening of HNSC cancer. 
 
Analysis of prognostic biomarker capability of 
FA-associated genes in HNSCC 

The correlation between the expression 
levels of the top-enriched genes in FAM with 
the survival period of patients with HNSCC by 
the Cox-regression analysis method and Cox 
coefficient values along log-rank P-values was 
calculated with the OncoLnc database. As 
depicted in Fig .7, most of the selected genes 
from FAM demonstrated weak prognostic 
capability in HNSCC, except for ACOX2, 
CYP4F12, and ELOVL6 genes, which 
demonstrated significant prognostic potential in 
HNSCC. The prognostic potential of the 
ELOVL6 gene was most statistically significant 
compared to other genes, and it appeared that 
patients who had higher expression levels of the 
ELOVL6 gene survived for shorter periods 
compared to the low-expression group. 

 

 
Fig. 6. ROC test of top enriched genes from FA metabolism in HNSCC. The diagnostic potential of the selected enriched genes 
from FA metabolic pathways was analyzed using their normalized expression data in the HNSCC tissue samples, and AUC 
values were generated by taking an ROC test with GraphPad Prism software. Two genes, including CYP4B1 and FMO2, 
demonstrated great diagnostic potential. P < 0.001 revealed a significant difference in each gene. ROC, Receiver operating 
characteristic; FA, fatty acid; HNSCC, head and neck squamous cell carcinoma; AUC, area under the curve. 
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Fig. 7. Cox-regression analysis of top enriched genes from FAM in HNSCC. The prognostic capability of the top enriched 
genes in FAM was compared using the cox-regression statistical approach available at the OncoLnc database. The low 
and high expressing groups were shown with blue and red colors, respectively. The log-rank P < 0.05 was considered as 
statistically significant. The ELOVL6 gene demonstrated the greatest prognostic potential in comparison to the rest of the 
genes in the HNSCC. FAM, Fatty acid metabolism; HNSCC, head and neck squamous cell carcinoma. 
 

DISCUSSION 
 
HNSCC is one of the commonly found 

neoplasms whose dysregulated metabolic 
profile remains poorly unknown. 
Understanding the expression patterns of 
metabolic pathways in the HNSCC can provide 
a useful background for the development of 
future therapeutic approaches that are focused 
specifically on the metabolic profile of patients 
with HNSCC (21,42,43). 

Lipid metabolism reprogramming in cancer 
cells is one of the highly investigated areas of 
the cancer molecular biology field (44,45). 
FAM is an important part of the metabolic 
pathways in cancer cells that demands adaptive 
regulation and changes according to cellular 
environmental conditions and the growth rate of 
the fast-dividing cancer cells (16,45-47). 
However, the exact expression alterations in 
FA-associated metabolic pathways in the 
HNSCC were still poorly understood. 
Therefore, the current study explored the 
enrichment and expression patterns of 
molecular pathways associated with the 

elongation, biosynthesis, catabolism, 
homeostasis, and metabolism of FAs in the 
HNSCC tissue samples. With the use of GSEA 
analysis, fatty acid elongation process was 
found to be enriched mostly in normal sample 
phenotypes, while the rest of the pathways, 
especially the biosynthesis and catabolism of 
FAs, were notably enriched in HNSCC 
samples. 

The top 10 highly enriched genes in FAM 
pathways were analyzed with the differential 
gene expression analysis method in the HNSCC 
expression dataset, and it was found that all 
genes except ABCD1 were significantly 
downregulated in HNSCC. The ABCD1 gene 
was commonly highly enriched in both FA 
elongation and FA homeostasis processes. 
ABCD1 is a protein located in the peroxisome 
membrane and is responsible for the transfer of 
FAs into the peroxisome. Previous studies have 
indicated that the ABCD1 gene was 
downregulated in human renal cell carcinoma, 
while its expression pattern in other types of 
cancers, including HNSCC, is notably 
unknown (48,49). 
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In the HNSCC samples, the expression 
levels of CYP4B1 and FMO2 genes were 
significantly lower compared to normal 
samples. The CYP4B1 gene belongs to the 
cytochrome P450 enzyme family, and its 
function is associated with the metabolism of 
xenobiotics (50,51). Many studies have 
suggested that the CYP4B1 gene could be a 
possible prognostic biomarker in bladder 
cancer, lung cancer, and nasopharyngeal 
carcinoma (49,52,53), and the present study 
also suggested a great prognostic capability of 
the CYP4B1 gene in HNSCC as well. FMO2 is 
a flavin-containing monooxygenase enzyme 
that belongs to the flavin-containing 
monooxygenase gene family, which its 
enzymatic activity is important in the 
metabolism of drugs, and its expression level 
has been reported to correlate with the 
carcinogenesis of oral squamous cell 
carcinoma, metastatic gastric cancer, breast 
cancer, and ovarian cancer, and its expression 
level was also reported to be significantly lower 
in the HNSCC tissue samples (54-58). Data 
analysis also confirmed the downregulated 
expression level of the FMO2 gene in HNSC 
cancer samples. The results achieved from 
correlation analysis with the Pearson method 
among the top enriched genes also revealed that 
the expression levels of the PDK4, PPKAA2, 
CYP4B1, CEACAM1, and CYP4F12 genes 
had moderate correlation, while the expression 
level of the ELOVL6 gene had a negative 
correlation with the DGAT2 gene in the cancer 
tissue samples. 

The PPI network analysis of FAM-
associated pathways revealed a notable 
interconnectivity between them and genes 
including ACOX1, enoyl-CoA hydratase, and 
3-hydroxyacyl CoA dehydrogenase 
(EHHADH), acyl-CoA synthetase long chain 
family member 1 (ACSL1), PPARA, and 
FASN, demonstrating the greatest connectivity 
with the rest of the genes in the network. The 
GO analysis of the gene sets involved in FAM 
revealed that most of the genes were involved 
in molecular functions such as identical protein 
binding, ATP, and iron ion binding. Iron plays 
a notable role as a necessary element for 
multiple enzymes involved in the metabolism 
of FAs. For instance, fatty acid desaturase 

enzymes rely on iron to be capable of 
introducing double bonds into carbon chains, 
resulting in the desaturation of fatty acids. This 
desaturation process is necessary for the 
synthesis of unsaturated FAs, which are 
important components of cell membranes. In 
addition, iron also affects lipid metabolism by 
influencing the activity of enzymes responsible 
for synthesizing and breaking down FAs, such 
as acyl-CoA synthetase. This enzyme facilitates 
the activation of FAs, allowing them to be 
incorporated into various metabolic pathways 
(59,60). 

The metabolism of arachidonic acid and 
peroxisome proliferator-activated receptor 
gamma (PPARγ) signaling was also predicted 
to involve a great number of genes from FAM 
gene lists, whose role in carcinogenesis in other 
forms of cancer has already been investigated 
by other studies as well (61-66). Other studies 
have also suggested that the inhibition of 
arachidonic acid metabolism could be an 
effective approach for the inhibition of cellular 
growth in cancer cells (61). It has also been 
previously suggested that the PPARγ gene 
could be a potential target for the design of 
specific chemotherapeutic agents for the 
treatment of oral cancer and could also be a 
good candidate for further investigation on the 
HNSC cancer treatments (67). 

ROC test is a common approach used for the 
prediction of the diagnostic potential of genes 
of interest for disease phenotypes. This study 
analyzed the diagnostic potential of the top              
10 enriched genes in FAM with the ROC 
method and exhibited that the diagnostic 
potential of the selected genes in HNSCC was 
not significant, except for the CYP4B1 and 
FMO2 genes. The CYP4B1 and FMO2 genes 
demonstrated statistically significant AUC 
values, which suggested that the genes could be 
suitable diagnostic candidates in the screening 
and detection of HNSCC. Previous studies have 
reported a high diagnostic potential for the 
CYP4B1 gene in bladder cancer and lung 
adenocarcinoma as well (49,52). 

By using the Cox-regression approach, the 
prognostic capability of the selected genes in 
HNSCC was assessed and found that ACOX2, 
CYP4F12, and ELOVL6 genes could be ideal 
prognostic biomarkers for the estimation of 
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survival period in patients with HNSCC. Also, 
other studies have noticed a notable prognostic 
potential for the ACOX2 gene in hepatocellular 
carcinoma, breast and lung cancer (68-70). A 
recent study has also reported that the 
CYP4F12 gene could be a high-potential 
biomarker as its overexpression correlated 
significantly with cellular migration and 
improved cellular adhesion by the inhibition of 
the epithelial-mesenchymal transition in HNSC 
cancer cells (71). 

By GSEA analysis, the current study found 
that the ELOVL6 gene was highly enriched in 
the fatty acid elongation process and 
represented a more statistically significant log-
rank P-value in HNSCC patients compared to 
other genes involved in FAM. The differential 
expression analysis also revealed that ACOX2 
(Log2 FC = -2.29, P = 2.76 E-28), CYP4F12 
(Log2 FC = -3.43, P = 6.72 E-15), and 
ELOVL6 (Log2 FC = -1.20, P = 1.60 E-10) 
genes were downregulated in HNSCC samples 
compared to normal tissue samples. Each 
cancer has its own expression profile, and 
biomarkers should be invested in specifically 
according to the type of cancer cell and cellular 
origin. However, due to the lack of knowledge 
and investigations in the prognostic potential of 
the candidate genes in patients with HNSCC, it 
would be beneficial to consider that the 
expression level of the ELOVL6 gene has also 
been reported by other studies to correlate with 
poor prognosis in cancer types such as breast, 
colorectal, and hepatocellular (72-74). Cox-
regression analysis revealed that the ELOVL6 
gene exhibited the most significant Log-rank P-
value (0.006) among the evaluated genes. 
Patients with HNSCC expressing high levels of 
ELOVL6 (high-risk group) had significantly 
shorter survival times compared to those with 
low ELOVL6 expression (low-risk group), who 
demonstrated markedly longer survival. 
Another study also observed that ELOVL6 
expression in HNSCC was associated with 
clinicopathological factors such as grade, 
survival time, and poor prognosis (75), which 
was also predicted by Cox-regression analysis 
in the present study. 

Overall, the current study investigated the 
expression patterns of different gene sets 
associated with the metabolism of FAs in 

HNSCC and identified high-potential 
diagnostic and prognostic biomarker candidates 
that could be investigated for the design of new 
therapeutic approaches for the treatment of 
HNSCC based on the expression profile of FAs 
in patients. However, this study included 
several limitations, such as a lack of normal 
tissue sample counts and cellular investigations 
on HNSCC cells. Currently, very few studies 
have investigated the dysregulated patterns of 
FAM in the HNSCC, and the potential of 
targeting these pathways for the treatment of 
head and neck cancer patients is poorly 
understood (17). The treatment of HNSCC cells 
with short-chain FAs such as arginine butyrate 
and α-lipoic acid is effective in the suppression 
of cellular growth (76).The levels of short-
chain FAs in the plasma of HNSC patients that 
received radiotherapy treatment have also been 
suggested to be associated with immunometabolic 
and inflammatory responses (77). 

Treatment options for HNSCC may involve 
a combination of approaches, considering the 
tumor stage, location, and the patient's overall 
health. Surgical resection and high-energy 
radiation are two common methods used to 
excise the tumor and potentially affected 
surrounding tissues. It can be a curative option, 
particularly for early-stage HNSCC. Success 
rates vary based on the tumor stage and 
location, but radiation therapy can lead to                   
5-year survival rates (78,79). Chemotherapy, 
immunotherapy, and targeted therapy are also 
useful therapeutic approaches used in the 
treatment of HNSCC (80-82). Understanding of 
the molecular biology of HNSCC plays a 
significant role in the improvement of the 
sensitivity and success rates of these strategies (82). 

Immunotherapy has demonstrated variable 
success rates in HNSCC, with some patients 
experiencing prolonged responses. 
programmed death-1 inhibitors, such as 
nivolumab and pembrolizumab, have shown 
notable efficacy in recurrent or metastatic 
HNSCC (83). Several randomized trials and 
meta-analyses have shown that induction 
chemotherapy, typically involving a 
combination of cisplatin and fluorouracil 
combined with a local treatment or concurrent 
chemoradiotherapy (CCRT), resulted in better 
survival and preservation of organs in patients 
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with advanced HNSCC, and those who were 
treated with CCRT using cisplatin tend to 
exhibit higher survival rates as well (84). 
Advancements in understanding the underlying 
biology of HNSCC, the use of biomarker 
analysis, and targeted treatment strategies have 
resulted in a notable shift towards 
individualized therapy in head and neck cancer 
(85). 

Therefore, future studies and investigations 
are needed to clarify the underlying molecular 
mechanism and interactions involved in the 
metabolism of FAs with varying carbon chain 
length that are dysregulated in the HNSCC and 
could be targeted for the design of new small-
molecule drugs that could alter these pathways 
and possibly help with the treatment of patients 
with HNSCC. Future studies are also suggested 
to investigate and develop prognostic models 
based on the introduced gene biomarkers and 
further examine their prediction potential in the 
overall survival rates of patients with head and 
neck cancer. 
 

CONCLUSION 
 

HNSCC is one of the most common forms of 
cancer with a short survival period. The 
metabolic profile of HNSC cancer was poorly 
investigated, and the current study reported a 
dysregulated expression and enrichment pattern 
of FA-associated pathways in HNSCC. For the 
diagnosis and prognosis of HNSCC based on 
the metabolic profile of patients, CYP4B1, 
FMO2, ACOX2, CYP4F12, and ELOVL6 
genes could be potential biomarkers for further 
investigation. 
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