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Abstract 

 
Background and purpose: Massive vaccine distribution is a crucial step to prevent the spread of SARS-CoV2 
as the causative agent of COVID-19. This research aimed to design the multi-epitope self-amplifying mRNA 
(saRNA) vaccine from the spike and nucleocapsid proteins of SARS-CoV2. 
Experimental approach: Commonly distributed constructions class I and II alleles of the Indonesian 
population were used to determine peptide sequences that trigger this population’s high specificity T-cell 
response. The best vaccine candidate was selected through the analysis of tertiary structure validation and 
molecular docking of each candidate with TLR-4, TLR-8, HLA-A*24:02, and HLA-DRB1*04:05. The 
selected multi-epitope vaccine combined with the gene encoding the replication machinery that allows the 
RNA amplification in the host cell. 
Findings/Results: Seven B-cell and four T-cell epitopes from the protein target were highly antigenic and 
conserved, non-allergen, non-toxic, and hydrophilic. Tertiary structure validation then determined the best 
multi-epitope construction with 269 AA in length containing hBD-2 adjuvant and PADRE. Most residues are 
predicted to be accessible by solvent and show high population coverage (99,26%). Molecular docking analysis 
demonstrated a stable and strong binding affinity with immune receptors. A recombinant plasmid as the 
template for mRNA production was constructed by inserting the multi-epitope DNA and non-structural 
polyprotein 1-4 gene of VEEV, which encodes the RNA replication complex to the cloning site of 
pcDNA3.1(+). 
Conclusion and implication: In silico, design of self-amplifying mRNA could be a potential COVID-19 
vaccine candidate since its ability to be amplified in the host cell can efficiently reduce the intake doses. 
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INTRODUCTION 

 
Coronavirus disease 2019 (COVID-19), 

caused by SARS-CoV-2 (severe acute respiratory 
syndrome Coronavirus 2), is an infectious 
respiratory disease that can be transmitted rapidly 
up to the point it was declared a global pandemic 
by WHO in March 2020.  

Several countries worldwide, including 
Indonesia, struggle to combat this pandemic. A 
significant increase in COVID-19 cases and the 
slowing down of the economy in Indonesia 
portrayed that this country had been one of the 
worst-hit countries.  

Domestic vaccine production is required to 
accelerate the vaccination rate and protect the 

Indonesian population from this deadly disease. 
As a contribution to vaccine development, this 
study offers a multi-epitope self-amplifying 
mRNA design expected to cover this population 
effectively. The self-amplifying mRNA seems 
promising since it requires a shorter time and 
lower cost of research and manufacturing, 
considering the finite time and expense of 
vaccine production in the pandemic era.  
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Furthermore, by applying this platform the 
discovery of antigenic substances could be 
accelerated through reverse vaccinology that 
utilizes immuno-informatics software and   
web-based servers. Moreover, the RNA 
sequences are produced by in vitro 
transcription, which is a process without the 
involvement of living cells. This production 
streamlines the cost and enhances the product’s 
purity (1,2). 

The instability of RNA sequence as the 
bottleneck of this vaccine development, can 
also be overcome by the addition of replication 
machinery encoding sequence that enables 
amplification of this RNA vaccine in the human 
cell. This feature will further increase the 
expression level of the antigenic peptide 
encoded by the RNA (1-2). Hence, this type of 
vaccine delivery requires a lower dose than the 
non-replicating vaccine. Eventually, applying a 
self-amplifying RNA vaccine will reduce 
production costs per shot and allow more 
people to be vaccinated in a shorter time (3,4). 

Spike protein has potential as a vaccine 
candidate due to its essential role in viral 
pathogenicity, particularly in the attachment of 
the virus with the human receptor angiotensin-
converting enzyme 2 (ACE-2). The specific 
immune response towards this protein is 
expected to prevent the entry of the virus into 
the host cell (4). Together with nucleocapsid, 
the essential protein for viral genome 
replication can become a representative antigen 
for activating the cellular immune response 
which can induce non-neutralizing antibodies 
responsible for signaling the other immune cells 
to eliminate infected cells (3,4). The best 
vaccine, multi-epitope vaccine (MEV), as its 
antigenic substances were confirmed to be 
highly antigenic and safe to induce humoral and 
cellular immune responses in this study. This 
vaccine also was designed explicitly to be 
highly coveted for the Indonesian population. 
Therefore, the highly distributed human 
leukocyte antigens (HLA) alleles in the 
Indonesian population were chosen for the                  
T-cell epitope prediction and molecular 
docking analysis. The molecular dynamic 
simulation was done to evaluate the interaction 
between MEV and each immune receptor. 
Finally, the multi-epitope codons were 

optimized for the human expression system. In 
silico cloning was performed by inserting this 
optimized MEV-encoded DNA alongside the 
nsP1-4 gene of the Venezuelan Equine 
Encephalitis Virus that encodes the replication 
machinery to a plasmid backbone. This 
constructed recombinant plasmid will then act 
as the cloning vector and template for 
producing multi-epitope self-amplifying 
mRNA vaccine sequences through the plasmid 
linearization, followed by the in vitro 
transcription (1-4). 
 

MATERIALS AND METHODS 
 
Selection and retrieval of SARS-CoV-2 
samples 

Complete genome sequences of SARS-
CoV-2 from Southeast Asia (Supplementary 
Table 1) were retrieved from the GISAID 
database (https://www.gisaid.org/) on 12 
October 2020 by activating these options: 
complete, high coverage, and low coverage 
exclude. GISAID considers a genome > 29,000 
bp as an entire genome and further assigns 
labels of high range < 1% of undefined bases 
(Ns) and low coverage > 5% of Ns. Therefore, 
in this study, only the complete genome based 
on the stated criteria by GISAID was included 
as the sample. The ‘high coverage’ filter was 
activated while filtering the sample to obtain 
sequences with < 1% of Ns and < 0.05% of 
unique amino acid mutations (mutation means 
not seen in other sequences in the database) 
with no insertion or deletion unless the 
submitter verified it. The ‘low coverage 
exclude’ filter was activated to exclude entries 
with > 5% undefined Ns (5). 
 
Construction of consensus sequences of spike 
and nucleocapsid protein of SARS-CoV-2  

All the samples were aligned with the 
nucleotide sequences of two proteins of                
SARS-CoV-2, which are spike and 
nucleocapsid of a wild-type strain isolated from 
Wuhan (Reference No. NC_045512.2), 
separately using MAFFT version 7 
(https://mafft.cbrc.jp/alignment/server/) with 
the option ‘align full-length sequences to an 
MSA’ on the MAFFT - add menu. This step 
was required to obtain the spike and 
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nucleocapsid protein sequences from the 
original unannotated sequence (6). Next, the 
aligned sequences of the sample were edited by 
BioEdit Sequence Alignment Editor before 
translating them into their amino acid 
sequences using MEGA-X (Molecular 
Evolutionary Genetic Analysis) version 10.0.5 
(7). The consensus sequence of each                      
protein (Supplementary Table 2) was                       
then generated from the edited sequences                         
by using EMBOSS Consensus Sequences 
(https://www.ebi.ac.uk/Tools/msa/emboss_con
s/) from EMBL-EBI with BLOSUM62 matrix 
(8,9).  

 
B-cell and T-cell epitopes prediction  

The peptide sequence that can be                 
recognized by B-cell receptor from each protein 
consensus separately was done using ABCpred 
(http://crdd.osdd.net/raghava/abcpred/ABC_su
bmission.html) with the set threshold at 0.6               
and window size at 16-mer (9). Meanwhile,               
the T-cell epitopes were predicted                                 
firstly by using the NetCTLpan 1.1 
(http://www.cbs.dtu.dk/services/NetCTLpan/) 
to obtain the cytotoxic T-cell (CTL) epitope 
with 9-mer in length (10). This study used                       
54 alleles of HLA class I of the Indonesian 
population (Supplementary Table 3) obtained 
from the Allele Frequency Net Database 
(allelefrequencies.net). The determination of            
T-cell epitopes was then followed by predicting 
the interaction of CTL epitopes with 30 alleles 
of HLA class II with high distribution in 
Indonesia (Supplementary Table 3) to define 
their ability to be used as antigens for helper                       
T-cell (HTL) priming. Finally, NetMHCII 2.3 
(http://www.cbs.dtu.dk/services /NetMHCII/) 
was used to predict the CTL epitope interaction 
with HLA class II (11). Therefore, each                             
of the selected T-cell epitopes considered 
vaccine candidates in this study should                          
have a good binding affinity with HLA class                     
I and II. 
 
Antigenicity, allergenicity, toxicity, 
conservancy, and hydrophobicity analysis of 
B-cell and T-cell epitopes 

The selection of predicted B-cell and T-cell 
epitopes from the previous step was based                   
on the following parameters: Firstly, the 
antigenicity of each epitope to define its                  

ability to bind specifically to the adaptive 
immune receptor was predicted using                   
the Vaxijen 2.0 server (http://www.ddg-
pharmfac.net/vaxijen/VaxiJen /VaxiJen.html) 
with the threshold at 0.4 and tumor was chosen 
as the model (12). Next, the antigenicity 
prediction was made using AllerTop v2.0 
(https://www.ddg-pharmfac.net/AllerTOP/) to 
minimize the allergic reaction as the response 
to the antigenic peptide. This server will 
perform the descriptive prediction by 
classifying the peptide into ‘Probable Allergen’ 
or ‘Probable Non-allergen’ status (13).                
Thirdly, the toxicity of each epitope was 
determined using the ToxinPred server 
(http://crdd.osdd.net/raghava/toxinpred/) using 
the Batch Submission menu (14). Next, the 
IEDB (http://tools.iedb.org/conservancy/) was 
used to define the conservancy degree of each 
epitope toward the reference spike (Reference 
No. YP_009724390.1) and nucleocapsid 
(Reference No. YP_009724397.2) protein by 
setting the identity threshold at ≥ 100% and 
linear epitope sequence was chosen as the ‘            
type of analysis’ (15). The epitope’s 
physicochemical properties were then                
defined using the ExPASy-ProtParam tool 
(https://web.expasy.org/protparam/). 
Hydrophobicity, as one of the physiochemical 
properties shown by the GRAVY score, was 
chosen as the selection criteria since the 
polarity of epitopes in the solvent reflects its 
accessibility to the immune receptor. The 
negative GRAVY score indicates the 
hydrophilic peptide, while the positive 
indicates the hydrophobic one. 
 
Chou-Fasman beta-turn scoring of B-cell 
epitopes and assessment of its binding to HLA 
class II 

These selection steps were only applied for 
B-cell epitopes which were defined as highly 
antigenic (has antigenicity score ≥ 0.9),                   
non-allergen, non-toxic, highly conserved 
(minimum identity ≥ 100%), and hydrophilic. 
Furthermore, the antigenicity of the B-cell 
epitope was re-confirmed by the Chou-Fasman 
beta-turn prediction using IEDB tools 
(http://tools.iedb.org/bcell/) (16). Again, the 
binding ability of the peptide sequence to the 
HLA class II allele of the Indonesian population 
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for determination of its propensity to be 
recognized by the HTL was predicted                            
by defining the HTL epitope (core peptide) 
from the B-cell epitope sequences                                
using NetMHCII 2.3 server 
(http://www.cbs.dtu.dk/services/NetMHCII/) 
(11). Therefore, only B-cell epitopes expected 
to have the potential for HTL-epitope were 
considered antigenic substances for the 
multiepitope-based vaccine since they can be a 
competent antigenic peptide for supporting the 
generation of B-cell memory (17). 
 
Population coverage analysis of T-cell 
epitopes 

Population coverage analysis toward the 
corresponding HLA allele with Indonesia                      
as the target population was done for T-cell 
epitopes that were already classified as highly 
antigenic with ≥ 0.9 of antigenicity score, non-
allergen, non-toxic, highly conserved 
(minimum identity ≥ 100%), and hydrophilic 
using IEDB population coverage 
(http://tools.iedb.org/ population/). Therefore, 
only those with ≥ 25% population coverage in 
this study would be selected as the antigenic 
substances for the multiepitope-based                   
vaccine (17).  
 
Generation of the 3D structures of the selected 
epitopes and peptide-protein molecular 
docking 

The 3D structure of each T-cell epitope                     
and HTL-epitope overlapped with the                         
B-cell epitope was generated using                             
PEP-FOLD3 server (https://mobyle.rpbs.univ-
paris-diderot.fr/cgi-bin/portal.py#forms::PEP-
FOLD3) (18). Then, for the docking purposes, 
the active residues of the tertiary structure of the 
T-cell epitope as the ligand and HLA-A*24:02 
(PDB ID: 3WLB) & HLA-DRB1*04:05                          
(PDB ID: 6BIR) as the receptors                                     
were determined using CPORT (consensus 
prediction of interface residues in                         
transient complexes) from HADDOCK server 
(https://alcazar.science.uu.nl/services/CPORT/
) (19). Finally, the HADDOCK server 
performed the molecular docking                               
between the ligand and each receptor 
(https://wenmr.science.uu.nl/haddock2.4/subm
it/1) (20). 

Construction and characterization of the 
primary structure of multiepitope vaccine  

Selected B-cell and T-cell epitopes were 
then arranged in an MEV construction referred 
to the vaccine’s antigenic substances. The 
human β-defensin-3 (hBD-3) as adjuvant and 
pan HLA-DR epitope (PADRE) sequence as 
the synthetic carrier peptide were added to the 
construction to boost the vaccine’s immune 
response. Four types of linkers were used to 
build this construction: EAAAK linker was 
added between the adjuvant and PADRE 
sequence, GPGPGP linker to connect between 
the T-cell epitopes, KK linker to connected 
between B-cell epitopes, and GGGS linker at 
the end of the construction (21,22). The MEV 
construction was evaluated based on the 
following parameters: antigenicity using 
Vaxijen 2.0 server (http://www.ddg-
pharmfac.net/vaxijen/VaxiJen/VaxiJen.html) 
(12), allergenicity using AllerTop v2.0 
(https://www.ddg-pharmfac.net/AllerTOP/) 
and AlgPred (https://webs. iiitd.edu.in/raghava/ 
algpred/submission.html), physicochemical 
properties using ExPASy-ProtParam 
(https://web.expasy.org/ protparam/), and the 
membrane topology using TMHMM server v. 
2.0 (http://www.cbs.dtu.dk/services/TMHMM/). A 
coverage percentage of the MEV for                   
the Indonesian population was also analyzed           
by IEDB population coverage 
(http://tools.iedb.org/ population/) with the 
option’ combined MHC-I and MHC-II epitopes 
and the selected HLA for this calculation was 
the HLA allele which was previously detected 
of being able to recognize and bind to all 
epitopes contained in the MEV. This prediction 
was necessary for its reliability in inducing the 
immunity response towards these specific 
antigenic peptides, specifically in the 
Indonesian population as the main target of this 
vaccine (18).    
 
Secondary structure prediction of 
multiepitope vaccine 

The secondary structure of MEV 
construction was predicted using                   
Psipred (http://bioinf.cs.ucl.ac.uk/psipred/)                
dan RaptorX (http://raptorx.uchicago.edu/ 
StructPredV2 /predict/), which classifies                   
the tendency of the residue of MEV to                   
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form the helix, coil, or strand structure. 
Furthermore, the RaptorX server 
(http://raptorx.uchicago.edu/StructPredV2/pre
dict/) was also used to analyze the solvent 
accessibility by categorizing each residue as 
buried, medium, and exposed relative position 
to the solvent (23). 
 
Generation, refinement, and validation of the 
3D structure of the multiepitope vaccine 

The tertiary (3D) structure of MEV                        
was generated using trRosetta 
(https://yanglab.nankai.edu.cn/trRosetta/) against 
the PDB70 database, which predicted the                
inter-residue contact and distance from                         
co-evolutionary data using deep                                       
learning to obtain a more accurate model (24). 
The tertiary MEV construction was then refined 
by a web-based online server, 3Drefine 
(http://sysbio.rnet.missouri.edu/3Drefine/) 
(25), and the final construction was visualized 
using PyMol software (26). Validation                             
of the 3D structure of MEV was done by       
several parameters using three web-based 
servers, such as SAVES 6.0 
(https://saves.mbi.ucla.edu/), MolProbity 
(http://molprobity.biochem.duke.edu/), and 
ProSA (https://prosa.services.came.sbg.ac.at/ 
prosa.php). SAVES 6.0 was used to determine 
the ERRAT score, Verify3D score, and 
Ramachandran plot. Based on this server, a 
protein with an ERRAT score of > 50 contains 
at least 80% of amino acids with a score                           
of ≥ 0.2 in its 3D to 1D profile in Verify3D and 
performed more than 90% of residues in the 
most favored region of the Ramachandran plot 
can be considered a good model. It is also 
known that protein with more than 98% residue 
in the favored region of the generated 
Ramachandran plot by MolProbity is also 
mentioned to perform a good quality (27). Its 
validation was also complemented with a                       
Z-score and generation of the plot of energy 
residue by the ProSA server. The protein                  
model with satisfying quality, based                         
on this server, is the one that has a Z-score 
within the range of scores typically                                 
found for proteins of similar size and the 
majority of energy residue shows a negative 
value (28).  
 

Molecular docking of multiepitope vaccine 
with toll-like receptor-4 and -8, HLA Class I, 
and II 

Determination of the active residues of the 
MEV as the ligand and toll-like receptor (TLR-
4; PDB ID: 3FXI), TLR-8 (PDB ID: 3W3M), 
HLA-A*2402 (PDB ID: 3WLB), and dan 
HLA-DRB1 (PDB ID: 6BIR) as the receptors, 
was done by the CPORT as the preceding step 
of molecular docking process (19). Then, the 
docking complex between MEV and each 
receptor was generated using HADDOCK 
(https://wenmr.science.uu.nl/haddock2.4/subm
it/1) server (20). The complex was                   
then refined by the FireDock server 
(http://bioinfo3d.cs.tau.ac.il/FireDock/php.php
) (29) and visualized by PyMol software (26). 
Evaluation of the docking complex in this study 
employed several parameters, such as root-
mean-square deviation (RMSD) calculated by 
the HADDOCK server, Gibbs’ free energy and 
equilibrium dissociation constant (KD) 
calculated by PRODIGY tool of HADDOCK 
server (https://wenmr.science.uu.nl/prodigy/). 
In addition, binding free energy or molecular 
mechanics/ generalized born surface area (MM-
GBSA) performed by HawkDock 
(http://cadd.zju.edu.cn/hawkdock/) server (30).  
 
Interacting binding residue determination of 
protein-ligand complexes 

PDBsum (https://www.ebi.ac.uk/thornton-
srv/databases/ pdbsum/Generate.html) was 
used to determine the interacting binding 
residue between MEV as the ligand and TLR-
4, TLR-8, HLA-A*24:02, and HLA-
DRB1*04:05 as the protein receptors. The 
residue of each receptor utilized to form a bond 
with the MEV was then compared with those 
residues used for binding with its corresponding 
ligand control. The residue of each receptor 
utilized to create an attachment with the MEV 
was then compared with those residues used for 
interacting with its corresponding ligand 
control. Suppose the residue is used for binding 
with its ligand control is also found as                   
the interacting binding residue with the MEV. 
In that case, it will indicate that the MEV                   
has a higher possibility of binding with the 
receptor (31).  
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Molecular dynamic simulation of protein-
ligand complexes 

Molecular dynamic simulation is an 
essential step in vaccine design to analyze the 
stability and the physical motion of the atom 
and molecule of the docking complex between 
the immune receptor and MEV. In this study, 
the generated docking complex was simulated 
by the iMODS server 
(http://imods.chaconlab.org/), which enabled 
us to predict and calculate the deformability, B-
factor, eigenvalue, variance, co-variance map, 
and elastic network of the protein-ligand 
complexes efficiently using vector field force 
field (32). 
 
In silico cloning 

Reverse translation of the peptide sequence 
of MEV into the DNA sequence was performed 
by EMBOSS BackTranseq 
(https://www.ebi.ac.uk/Tools/st/emboss_backt
ranseq/). The VectorBuilder server 
(https://en.vectorbuilder.com/tool/codon-
optimization/) was used to optimize DNA 
encoding MEV to obtain a more compatible 
codon for the expression of mRNA in human 
(homo sapiens) cells as the host target for the 
vaccine. This modified nucleotide was then 
inserted, along with 5’untranslated terminal 
region (5’UTR), non-structural polyprotein 1-4 
(nsP1-4) gene from Venezuelan equine 
encephalitis virus (VEEV), the non-coding 
segment of VEEV, human tissue plasminogen 
activator (tPa) signal peptide, and 3’UTR, to the 
restriction site of pcDNA3.1(+) as the backbone 
plasmid. nsP1-4 VEEV encodes replication 
machinery, including RNA-dependent RNA 
polymerase (RdRp), that enables the mRNA 
sequence to be amplified in a host cell. The 
UTR sequence of VEEV acts as the core 
promoter of RdRp in translation initiation and 
supports mRNA stability (33). tPa signal 
sequence was added to drive multi-epitope as 
antigenic peptide into the cellular secretion 
pathway with higher expression. 
 
Supplementary data availability 

Supplementary data including figures and 
tables are available through an online repository 
(https://github.com/ernagirirachman/RPS_91_
23_Supp_Data).  

RESULTS 
 
Identification and selection of viral protein 
sequences 

Complete genome sequences were only 
available in 10 countries during sample 
retrieval: Brunei Darussalam, Cambodia, 
Indonesia, Malaysia, Myanmar, Philippines, 
Singapore, Thailand, Timor-Leste, and 
Vietnam. Therefore, a total of 838 samples 
(Supplementary Table 1) within the range of 
29.720 bp to 29.880 bp in length were chosen 
to be the samples in this study since this 
selected range was approximately close to the 
size of the complete annotated genome of wild-
type SARS-CoV-2 from Wuhan, which has 
29.903 bp in length that was used as the 
reference (Reference No. NC_045512.2).   
 
Prediction and selection of B-cell and T-cell 
epitope 

The B-cell and T-cell epitopes were 
separately predicted from the consensus 
sequence of spike and nucleocapsid protein 
(Supplementary Table 2). After going through 
the elimination process by identifying several 
characteristics of each predicted B-cell epitope 
(Supplementary Table 4), this study obtained a 
total of 7 linear epitopes with 16-mer in size 
(Table 1) that passed all the criteria: highly 
conserved (minimum identity ≥ 100%), highly 
antigenic (antigenicity score ≥ 0.9), non-
allergen, non-toxic, hydrophilic (GRAVY 
score < 0), and Chou-Fasman score for every of 
7 sequences at approximately ≥ 1, and contain 
core peptide(s) which is also recognized by at 
least one allele of HLA class II being used in 
this study. Meanwhile, the final selected                  
T-cell epitopes from each consensus sequence 
(Table 2) have all these characteristics: highly 
conserved (minimum identity ≥ 100%), highly 
antigenic (antigenicity score ≥ 0.9), non-
allergen, non-toxic, hydrophilic (GRAVY 
score < 0), and population coverage for 
Indonesia were ≥ 25%. Furthermore, T-cell 
epitopes in Table 3 were identified to bind with 
HLA class I and II used in this study. Therefore, 
the term T-cell epitope in this study refers to the 
epitopes that were predicted to have the ability 
to be involved in the priming of both CTL and 
HTL (12-16).  
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Table 1. Characteristics of selected B-cell epitope. 

Protein regiona B-cell epitope  
Antigenicity 
score 

Physicochemical 
properties 

Interaction with HLA class II 

Hydrophobicity 
(GRAVY score) 

Half-
lifeb 
(h) 

HLA IIc Core peptide 

N-terminal domain 
of S1 subunit spike of 
SARS-CoV and 
similar beta 
coronavirus lineage 
B  

70VSGTNGTKRFD
NPVLP85 

1.0718 -0.631 100  

DRB1_0301 VSGTNGTKR 

DRB1_0301 KRFDNPVLP 

DRB1_1001 TKRFDNPVL 

DRB1_1302 KRFDNPVLP 

The middle portion 
of the nucleocapsid 

91TRRIRGGDGK
MKDLSP106 

1.3552 -1.4 7.2  
HLA-DQA10501-
DQB10301 

IRGGDGKMK 

114GTGPEAGLPY
GANKDG129 

1.0381 -0.887 30  

HLA-DQA10501-
DQB10301 

PEAGLPYGA 

HLA-DQA10301-
DQB10301 

PEAGLPYGA 

32RSGARSKQRRP
QGLPN47 

1.2967 -2.025 1  
DRB1_1301 SGARSKQRR 

DRB1_1301 ARSKQRRPQ 

169KGFYAEGSRG
GSQASS184 

1.0419 -0.944 1.3  

DRB1_1101 FYAEGSRGG 

HLA-DQA10201-
DQB10301 

SRGGSQASS 

HLA-DQA10201-
DQB10301 

EGSRGGSQA 

HLA-DQA10301-
DQB10301 

GSRGGSQAS 

HLA-DQA10301-
DQB10301 

SRGGSQASS 

HLA-DQA10501-
DQB10301 

FYAEGSRGG 

HLA-DQA10501-
DQB10301 

AEGSRGGSQ 

HLA-DQA10501-
DQB10301 

GSRGGSQAS 

HLA-DQA10501-
DQB10301 

SRGGSQASS 

200GSSRGTSPAR
MAGNGG215 

1.3170 -0.856 30  

HLA-DQA10102-
DQB10602 

RGTSPARMA 

HLA-DQA10201-
DQB10301 

GSSRGTSPA 

HLA-DQA10201-
DQB10301 

SSRGTSPAR 

HLA-DQA10201-
DQB10301 

SRGTSPARM 

HLA-DQA10201-
DQB10301 

RGTSPARMA 

HLA-DQA10201-
DQB10303 

SRGTSPARM 

HLA-DQA10201-
DQB10303 

RGTSPARMA 

HLA-DQA10201-
DQB10303 

TSPARMAGN 

HLA-DQA10201-
DQB10402 

SSRGTSPAR 

HLA-DQA10201-
DQB10402 

RGTSPARMA 
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192NSSRNSTPGSS
RGTSP207 

1.0778 -1.637 1.4  

HLA-DQA10201-
DQB10301 

STPGSSRGT 

HLA-DQA10201-
DQB10301 

TPGSSRGTS 

HLA-DQA10201-
DQB10301 

PGSSRGTSP 

HLA-DQA10201-
DQB10402 

STPGSSRGT 

HLA-DQA10501-
DQB10301 

SRNSTPGSS 

HLA-DQA10501-
DQB10301 

STPGSSRGT 

HLA-DQA10501-
DQB10303 

PGSSRGTSP 

a, Protein region was defined based on the alignment of consensus protein with the annotated reference sequence of spike protein (Reference No. 
YP_009724390.1) and nucleocapsid (Reference No. YP_009724397.2); b, Half-life in mammalian cell; c, HLA class II alleles that were detected to 
be able to recognize the peptide sequence with 9-mer in size containing in the B-cell epitope (it was alco called by overlapped HTL epitope with B-
cell epitope); HLA, human leukocyte antigen. 

 
 
 

Table 2. Characteristics of selected T-cell epitope 

Protein 
regiona 

T-cell epitope 

HLA alleleb 

Antigenicity 
score 

Physicochemical 
properties 

Population 
coverage HLA 

Class I 
HLA 
Class II 

Hydrophobicity 
(GRAVY score) 

Half 
lifec 
(h) 

N-terminal 
domain of S1 
subunit spike 
of SARS-
CoV and 
similar beta 
coronavirus 
lineage B 

36VYYPDKVFR44 
HLA-
A*33:03 

DRB1_0301 0.8863 -0.544 100 33.01% 

Unknown 
until the 
RBD of the 
S1 subunit 
spike of 
SARS-CoV-2 

312IYQTSNFRV320 

HLA-
A*24:02 
HLA-
A*24:07 
HLA-
A*24:10 

DRB1_0701 
DRB1_0901 
DRB1_1302 
DRB1_1602 

1.0766 -0.311 20 72.72% 

RBD of S1 
subunit spike 
of SARS-
CoV-2 

454RLFRKSNLK462 

HLA-
A*03:01 
HLA-
A*11:01 
HLA-
A*11:04 
HLA-
A*30:01 
HLA-
A*74:01 

DRB1_1301 1.4188 -1.189 1 37.18% 

456FRKSNLKPF464 

HLA-
B*08:01 
HLA-
B*27:06 

DRB1_0701 0.8958 -0.978 1.1 25.44% 

A, Protein region was defined based on the alignment of consensus protein with the annotated reference sequence of spike protein (Reference No. 
YP_009724390.1) and nucleocapsid (Reference No. YP_009724397.2); b, HLA alleles that were detected to be able to recognize the corresponding 
epitopes; c, half-life in mammalian cell; RBD, receptor binding domain; HLA, human leukocyte antigen. 
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Molecular docking 
Molecular docking was necessary to confirm 

the interaction between each epitope with a 
representative of HLA alleles, commonly 
distributed with high frequencies among the 
Indonesian population. Table 3 shows docking 
scores of T-cell epitopes with HLA-A*24:02 
representing HLA class I and HLA-
DRB1*04:05 as HLA class II. Table 4 shows 
the docking score of the complex between the 
HTL epitope contained in the B-cell epitope 
and the HLA class II allele. These two HLA 
alleles were chosen to represent this docking 
process because they were recorded as one of 
the most commonly found alleles among the 
Indonesian population as the main target of this 
vaccine.  
Gibbs free energy of binding (ΔG) and RMSD 
scoring were picked as the primary 
considerations to evaluate the interaction of the 
docking complex. At the same time, the other 
parameter can be seen in the Tables 4 and 5. 
RMSD score is usually considered an essential 
parameter for evaluating efficient docking 

studies, as it identifies the complex with the 
lowest energy and slightest structural deviation. 
Therefore, the lower the RMSD scores of the 
docked complex, the better the quality of the 
model. Based on the HADDOCK as the server 
being used for the docking analysis, the RMSD 
score of ≤ 2.5 Å indicates a good quality model 
or correct (acceptable) binding poses (34). In 
this study, 5 HTL epitopes have RMSD value 
of less than 2.5 Å, indicating that those docked 
complexes were considered good quality 
models. 

The ΔG also determines the stability of the 
protein-ligand complex or binding affinity of a 
ligand to the receptor. For example, the 
negative value of ΔG of all the docked 
complexes shown in Tables 3 and 4 indicates 
that binding occurrence between each epitope 
as a ligand and the HLA as a receptor is possible 
to happen when the system reaches an 
equilibrium state at constant pressure and 
temperature and could be concluded that these 
epitopes have a good binding affinity with the 
given receptor (35). 

 
Table 3. Docking evaluation of selected T-cell epitope with the representative of HLA class I and II allele. 

Protein T-cell epitope 
Docking with HLA-A*24:02 

(PDB ID: 3WLB) 
Docking with HLA-DRB1*04:05 

(PDB ID: 6BIR) 

RMSD (Å) ΔG (kcal/mol) RMSD (Å) ΔG (kcal/mol) 

Spike 

36VYYPDKVFR44 1.9 ± 0.0 -8.4 0.6 ± 0.4 -8.4 
312IYQTSNFRV320 0.3 ± 0.2 -10.9 0.4 ± 0.3 -10.4 

454RLFRKSNLK462 0.4 ± 0.2 -9.2 0.5 ± 0.3 -8.1 

456FRKSNLKPF464 1.8 ± 0.0 -8.6 1.2 ± 0.1 -7.8 

HLA, human leukocyte antigen; RMSD, root-mean-square deviation; ΔG, Gibbs free energy of binding. 

 
 

Table 4. Docking evaluation of HTL epitope in B-cell epitope with the representative of HLA class II allele. 

Protein B-cell epitopea 
Docking with HLA-DRB1*04:05 (PDB ID: 6BIR) 

RMSD (Å) ΔG (kcal/mol) 

Spike 70
VSGTNGTKRFDNPVLP

85
 5.5 ± 0.1 -8.1 

Nucleocapsid 

91
TRRIRGGDGKMKDLSP

106
 0.6 ± 0.3 -7.5 

114
GTGPEAGLPYGANKDG

129
 4.8 ± 0.1 -8.2 

32
RSGARSKQRRPQGLPN

47
 2.1 ± 0.1 -10.1 

169
KGFYAEGSRGGSQASS

184
 0.4 ± 0.2 -9.7 

200
GSSRGTSPARMAGNGG

215
 0.7 ± 0.4 -8.4 

192
NSSRNSTPGSSRGTSP

207
 1.3 ± 0.1 -9.8 

a, The bold and italic peptide sequences were the core peptide that was detected to be recognized by HLA class II; HLA, human leukocyte antigen; 
RMSD, root-mean-square deviation; ΔG, Gibbs free energy of binding. 
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Interacting binding residue between ligand-
receptor complex 

The interactions between the binding 
residues of each individual epitope and HLA 
were also analyzed. The residues used by the 
receptor to bind to those epitopes were then 
compared with residues used by each receptor 
to bind to its ligand control. The chosen ligand 
control (Tables 5 and 6) is a molecule or protein 
that could create an established binding with the 
receptor, and the crystal structure of the ligand-
receptor complex is available. Therefore, it can 
be retrieved from the Protein Data Bank (PDB) 
(36,37). Residues of the receptor being used for 
the binding with its ligand control are usually 
called hotspot residues. These residues are 
commonly specialized for binding with their 
appropriate ligand (38).  

Tables 5 and 6 show the identical residues      
of the representative HLA class I allele                      
(HLA-A*24:02) or HLA class II allele                            
(HLA-DRB1*04:05) that were used for the 
binding with epitopes and also with each                       

ligand control. Consequently, the residual 
similarity of receptors being used for the 
interaction between epitopes and ligand control 
could be evidence of the ability of the epitopes 
to form an established or conserved bound with 
the designated or hotspot residues of the 
receptor.  

It was observed that these residues form 
either hydrogen bonds or nonbonded contacts 
with the epitopes. Based on the PDB sum as the 
server being used for the prediction of binding 
residue between docked complex, the applied 
criteria to identify a hydrogen bond are that the 
distance between hydrogen atoms (H) and 
acceptor atoms (A) is < 2.7 Å, the distance 
between donor atoms (D) and acceptor atoms 
(A) is < 3.3 Å, and the D-H-A angle > 90°, and 
that the H-A-AA angle > 90°, where the AA 
atom is the one attached to the acceptor. At the 
same time, nonbonded contacts are defined as 
any contacts between ligand and protein 
involving either a carbon or a sulfur atom, 
where the interaction distance is ≤ 3.9 Å (31). 

 
Table 5. The same residue of HLA-A*24:02 (PDB ID: 3WLB) or HLA-DRB1*04:05 (PDB ID: 6BIR) that were 
used for the interaction with each of the T-cell epitope and the ligand control. 

T-cell epitope Receptor 
The residue (s) of the receptora 

Hydrogen bondb Nonbonded contactc 

36VYYPDKVFR44 HLA-A*24:02 Gln156 
Lys66, His70, Asn77, Ile80, Tyr84, Phe99, 
Tyr116, Thr143, Lys146, Trp147, Val152, 
Gln155, Gln156, Tyr159 

312IYQTSNFRV320 HLA-A*24:02 
Asn77, Tyr84, Lys146, 
Trp147, Gln156 

His70, Asn77, Ile80, Tyr84, Phe99, Tyr116, 
Tyr123, Thr143, Lys146, Trp147, Val152, 
Gln156 

454RLFRKSNLK462 HLA-A*24:02 Asn77, Lys146, Gln156 
His70, Asn77, Ile80, Tyr84, Tyr116, Tyr123, 
Thr143, Lys146, Trp147, Val152, Gln156 

456FRKSNLKPF464 HLA-A*24:02 Asn77, Trp147, Gln156 
His70, Asn77, Ile80, Tyr84, Leu95, Phe99, 
Tyr116, Tyr123, Thr143, Lys146, Trp147, 
Val152, Gln155, Gln156, Tyr159 

36VYYPDKVFR44 HLA-DRB1*04:05 - Gln9, Glu11, Asp66, Asn69 
312IYQTSNFRV320 HLA-DRB1*04:05 Gln9, Glu11 Gln9, Glu11, Asp66, 
454RLFRKSNLK462 HLA-DRB1*04:05 - Gln9, Glu11, Asp66 
456FRKSNLKPF464 HLA-DRB1*04:05 Gln9, Glu11, Asn62 Gln9, Glu11, Asn62, Asn69, Arg76 

a, Ligand control of HLA-A*24:02 is Nef126-10 protein (immunodominant cytotoxic T-Cell epitope), while the ligand control of HLA-DRB1*04:05 
is Citrullinated Vimentin 424cit419-431 protein; b, the distance between hydrogen and acceptor atom is < 2.7 Å, while the distance between donor 
and acceptor atom is <3.3 Å; c, nonbonded contact is the interaction between ligand (epitope) and receptor involving the C or S atom with a distance 
of ≤ 3.9 Å; HLA, human leukocyte antigen. 
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Table 6. The same residue of HLA-DRB1*04:05 (PDB ID: 6BIR) that was used for the interaction with each B-cell 
epitope and the ligand control 

HTL epitope contained in B-
cell epitope sequencea 

Receptor 
           The residue (s) of the receptorb 

Hydrogen bondc Nonbonded contactd 
77KRFDNPVLP85 HLA-DRB1*04:05  Glu11 Gln9, Glu11 
94IRGGDGKMK102 HLA-DRB1*04:05  Glu11, Asn62 Glu11, Asn62, Asp66, Asn69 
116PEAGLPYGA124 HLA-DRB1*04:05  Glu11 Gln9, Glu11, Asp66 
33SGARSKQRR41 HLA-DRB1*04:05  Glu11 Gln9, Glu11, Asp66 
176SRGGSQASS184 HLA-DRB1*04:05  Gln9, Asn69 Gln9, Glu11, Asp66, Asn69 
203RGTSPARMA211 HLA-DRB1*04:05  Glu11 Glu11, Asp66, Asn69 
197STPGSSRGT205 HLA-DRB1*04:05  Glu11 Glu11, Asp66, Asn69 

a, Predicted the core peptide interaction with HLA-DRB1*04:05; b, ligand control of HLA-DRB1*04:05 is citrullinated vimentin 424cit419-431 
protein; c, the distance between hydrogen and acceptor atom is < 2.7 Å, while the distance between donor and acceptor atom is < 3.3 Å; d, nonbonded 
contact is the interaction between ligand (epitope) and receptor involving the C or S atom with a distance of ≤ 3.9 Å; HLA, human leukocyte antigen. 

 
Table 7. The amino acid sequence of multi-epitope vaccine 

The amino acid sequence of the multiepitope vaccine  Length 

EAAAKGIINTLQKYYCRVRGGRCAVLSCLPKEEQIGKCSTRGRKCCRRKKEAAAK 
AKFVAAWTLKAAAGPGPGVYYPDKVFRGPGPGIYQTSNFRVGPGPGRLFRKSNL 
KGPGPGFRKSNLKPFKKVSGTNGTKRFDNPVLPKKTRRIRGGDGKMKDLSPKKG 
TGPEAGLPYGANKDGKKRSGARSKQRRPQGLPNKKKGFYAEGSRGGSQASSKKG 
SSRGTSPARMAGNGGKKNSSRNSTPGSSRGTSPKKAKFVAAWTLKAAAGGGS 

269 aa 

 
Table 8. Characteristics of multi-epitope vaccine. 

Antigenicity score 0.8701 (Antigenic) 

Allergenicity Non-allergen 

Molecular weight (kDa) 28388.71 

Half-life in mammalian cell (h) 1  

Hydrophobicity -0.946 (hydrophilic)  

Topology membrane Outside 

Population coverage (area: Indonesia)  99.26% 

 

 
Fig. 1. Multi-epitope vaccine construction 
 
Construction and characterization of the 
primary structure of multiepitope vaccine  

Selected B-cell and T-cell epitopes were 
organized and fused in MEV construction by 
linkers along with the hBD-3 and PADRE 

sequence (Fig. 1. and Table 7). hBD-3 was 
chosen as the adjuvant because of its role in 
initiating the cellular immune response by 
inducing the maturation of dendritic cells that 
act as the antigen-presenting cells to activate 
the naïve T-cell to induce strong proliferation 
and secretion of interferon-gamma (IFN-γ) by 
human T-cell. It is known that IFN-γ is an 
essential cytokine to activate and regulate 
antiviral response. Besides the adjuvant, 
PADRE sequences were added between the 
adjuvant and the first epitope and after the last 
epitope (C-terminal of the MEV). PADRE has 
been described as the synthetic peptide 
sequence with 13 aa in size that performed 
high-affinity binding with approximately 15-16 
HLA class II from the DR isotype found in the 
human population. It is extensively utilized as 
the carrier to induce HTC in vaccine 
construction designed for humans. 
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Four linkers were used for this construction: 
EAAAK, GPGPG, KK, and GGGS. First, 
EAAAK is an α-helix linker extensively used to 
control the distance and reduce the interference 
between the fused peptide (32). Secondly, the 
GPGPG linkers were used to prevent the 
generation of junctional immunogenicity and to 
facilitate the immune processing and 
presentation of selected epitopes by HLA-II 
(21). Next, KK linkers were used as the ideal 
spacer between B-cell epitope that is well-
known to induce a higher level of antibody than 
the repeated alanine (A) or glycine (G) spacer 
and could also prevent the production of 
reactive antibody towards the non-specific 
peptide sequence between the fused peptide. At 
the same time, the GGGS linker was used 

because it increased the sequence's flexibility 
without affecting the protein attachment 
function (22). 

Based on the characterization of the peptide 
sequence (primary structure) of MEV (Table 8), 
it was observed that this construction was 
highly antigenic (had a satisfying antigenicity 
score), non-allergen, hydrophilic, and tends to 
be presented outside of the cell membrane. 
Furthermore, its half-life is relatively short 
about one hour in mammalian cells (12-15). 
Moreover, the population coverage was 99.26% 
for the Indonesian population. Therefore, by 
performing this high population coverage, this 
vaccine candidate could hopefully be a potent 
tool against this infectious disease among the 
Indonesian population (17). 

 
 

 

Fig. 2. Secondary structure of multi-epitope vaccine 
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Secondary structure construction of MEV 
Among the 269 amino acids of MEV, the 

formation of α-helix is comprised of 27 amino 
acids representing 10.04%, 35 amino acids in 
strands representing 13.01%, and 207 amino 
acids from the coil, which are 76.95% of the 
whole MEV construct strands (Fig. 2, Table 9). 

The secondary structure evaluation was also 
evaluated by the accessibility of the residue to 
the solvent using the RaptorX server (Fig. 3). 
This figure shows that most of the residue of 
MEV lay on the exposed region (indicated by 
the red color). It is known that the residue used 
by a protein to build the interaction with another 
protein, usually called hotspot residue, is 
commonly on the membrane's surface or lies on 
the exposed region, making it easily accessible 
to the immune receptor (38). Hence, this study 
predicted that most of the residue of this vaccine 
candidate has a bigger chance of binding with the 
residues of the immune receptor.  

 
Construction and validation of the tertiary 
structure of MEV 

Figure 4 shows the tertiary structure of the 
MEV that was further used for the molecular 

MEV that was further used for the molecular 
docking analysis to assess its interaction with 
the various immune receptors. Several 
parameters were then used to validate the 
tertiary structure of MEV. First, the 
Ramachandran plot is a long-standing 
evaluation of protein conformation 
demonstrating the torsional angle, phi (φ) and 
psi (ψ), of the amino acid residue in a peptide 
chain. This plot determines the most favorable, 
allowed or disallowed residue conformation. 

 

 
Fig. 3. The tertiary structure of multi-epitope vaccine. It 
is colored based on the secondary structure (red for the α-
helix, yellow for the strand, and green for the coil). 

 
 

Table 9. Percentage of alpha-helix, coil structure, and strand structure in multi-epitope vaccine construction 

Total length (aa) 
Percentage and number of amino acid 

α-helix Coil structure Strand  

269 10.04% (27) 76.95% (207) 13.01% (35) 

 
 
 

 
Fig. 4. Solvent accessibility of multi-epitope residues. 
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Based on the SAVES 6.0 server, a good 
quality structure should perform > 90% of its 
residue in the most favored region and none in 
the disallowed region of the Ramachandran 
plot. Meanwhile, the MolProbity server 
advocates that 95-98% of residues should lie in 
the favored region to be classified as a good-
quality protein model (27). According to the 
Ramachandran plot parameter created by 
SAVES 6.0 (Fig. 5A), 94.6% of MEV residues 
lay in the favorable region, 5.4% were in the 
additional allowed region, and none of the 
residues was in the disallowed region. This 
parameter was also re-confirmed by 
MolProbity, which estimated that 97.4% of 
MEV residues were in the favorable region 
(Fig. 5B). Therefore, by evaluating each 

server's criteria of the Ramachandran plot, the 
3D structure of MEV could be considered a 
good model. 

Moreover, the Z-score measured by the 
ProSA server indicates overall model                   
quality and measures the deviation of the 
structure's total energy concerning an energy 
distribution derived from random 
conformations. Therefore, the Z-score for a 
good-quality model should be within the                 
range of scores typically found for a                   
similar-sized protein. For example, the                   
Z-score plot in Fig. 5C shows that the Z-score 
of MEV falls within the range                   
characteristics for native proteins of                   
similar size. Therefore, this structure is 
predicted to have less error (39). 

 

 
Fig. 5. (A) Ramachandran plot by SAVES 6.0 server; (B) Ramachandran plot by MolProbity server; (C) predicted Z-
score by ProSA server; (D) residue energy plot by ProSA server. 
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Another validation criterion created by the 
same server with Z-Score is an energy plot 
showing the local model quality by plotting 
energies as an amino acid sequence position 
function. A good quality protein model is 
expected to have residues with negative value 
energy since the positive value corresponds to a 
model's problematic or erroneous parts (39). 
For example, the energy plot in Fig. 5D shows 
that many of the residues of MEV had negative 
value energy. Hence, this model could be 
considered to perform a good quality. Further 
analyses using the SAVES 6.0 revealed an 
ERRAT score (overall quality score) of 76.245 
and Verify3D of 82.53% (Table 10). ERRAT 
score shows the statistical analysis of 
nonbonded interaction between atoms, in which 
higher scores indicate higher quality because 
the accepted range for a high-quality model is > 
50.  

Furthermore, the Verify3D, which the DSPP 
measures (define the secondary structure of the 
protein) algorithm, indicates the compatibility 
determination of the atomic model (3D 
structure) towards its amino acid sequence (1D 
structure) by determining its structural class 
according to their location and secondary 

according to their location and secondary 
structure (alpha, beta, loop, polar, nonpolar, 
etc.) and also the comparison with another 
established structure. Based on the server being 
used, a model is verified to have good quality 
when its protein structure has at least 80% 
amino acid with a score of ≥ 0.2 in its 3D to 1D 
profile. Therefore, by following the criteria of 
these two parameters the 3D structure of MEV 
in this study could be considered to have a good 
quality as a protein model.  
 
Molecular docking analysis 

The interaction between MEV and various 
immune receptors was analyzed by molecular 
docking using the HADDOCK server, and the 
evaluation considered the obtained docking 
score (Table 11). This server usually provides 
several docking models and puts them in order 
based on the measured HADDOCK score. 
HADDOCK score is a weighted sum of various 
energy terms, including van der Waals, 
electrostatic, desolvation, and restraint 
violation energies. This parameter indicates the 
most accurate protein-ligand complex based on 
energetic stability. 
 

Table 10. Tertiary structure validation of multi-epitope vaccine. 

Server Validation parameter Threshold Multi-epitope vaccine 

SAVES 6.0 

ERRAT score (overall quality factor) > 50 76.245 

Verify 3D (based on the dictionary of the secondary 
structure of protein algorithm) 

≥ 80% 82.53% 

Ramachandran (most favored) > 90% 94.6% 

Ramachandran (additional allowed) - 5.4% 

Ramachandran (generously allowed) - 0.0% 

Ramachandran (disallowed) 0% 0.0% 

MolProbity Ramachandran favored 95-98% 97.4% 

ProSA 
Z-score In the native protein range -3.15 

Majority of residue energy  Negative Negative 

 
 

Table 11. Docking parameter of vaccine construction with various immune receptors. 

Receptor PDB ID 
RMSD  
(Å) 

Haddock score 
ΔG 
(kcal/mol) 

Kd (M) at 25 °C 
MM-GBSA 
(kcal/mol) 

TLR-4 3FXI 1.1 ± 0.7 - 83.8 ± 15.4 -14.1 4.80E-11 -153.57 

TLR-8 3W3J 0.9 ± 0.5 -95.8 ± 16.9 -17.2 2.30E-13 -111.19 

HLA-A*24:02 3WLB 1.6 ± 0.9 -71.6 ± 23.2 -12.9 3.60E-10 -98.47 

HLA-DRB1*04:05 6BIR 1.1 ± 0.9 -79.1 ± 12.9 -13.6 9.80E-11 -168.13 

PDB, Protein data bank; RMSD, root-mean-square deviation; ΔG, Gibbs free energy of binding; MM-GBSA, molecular mechanics/ generalized 
born surface area 
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Table 12. The same residue of each receptor was used for the interaction with the multi-epitope vaccine and the ligand 
control. 

Receptor 
The residue (s) of the receptora 

Hydrogen bond Nonbonded contact Salt bridge 

TLR-4 Glu42 Met41, Glu42, Asp60, Phe63 Glu42, Asp60 

TLR-8 - Tyr468, Leu490, Asn511, Asp536 - 

HLA-A*24:02 Tyr84, Lys146 
Lys66, Ile80, Tyr84, Lys146, Trp147, Val152, 
Gln155, Tyr159 

- 

HLA-DRB1*04:05 Glu11, Asn69 
Gln9, Glu11, Phe24, Phe32, Ala52, Ser53, Phe54, 
Gly58, Asn62, Val65, Asp66, Asn69, Ile72 

- 

a, Ligand control of each receptor: MD-2 for TLR-4, imidazoquinoline (CL097) for TLR-8, HIV-1 Nef126-10(8T10F) for HLA-A*24:02, 
citrullinated vimentin 424cit419-431 for HLA-DRB1*04:05; TLR, toll-like receptor; HLA, human leukocyte antigen. 

 
Nevertheless, its inconsistency in scoring 

function means that this parameter cannot serve 
as a standalone tool in drug design but must be 
used alongside another docking score (20). 
Based on the HADDOCK server, the RMSD 
score of ≤ 2.5 Å indicates a good quality model 
(34). Table 11 shows that RMSD for all the 
MEV-receptor complexes was below 2.5 Å. 
This result pointed out that all docked 
complexes had acceptable binding poses. The 
negative value of ΔG of all the docked 
complexes shown in Table 11 indicates that 
MEV had a good binding affinity with all given 
receptors (35). Kd (dissociation constant) has 
been extensively used to describe the affinity 
between vaccines and drugs. The ligand with 
the protein receptor with the lower Kd value 
indicates the stronger binding or higher affinity 
between the docked complex (40). 

Moreover, MM-GBSA, usually called 
binding free energy, is the sum of all the 
intermolecular interactions between the ligand 
and the target with the lower scores, indicating 
a better docking model (41). Further docking 
parameters of MEV-receptor complexes can be 
seen in Supplementary Tables 5 and 6.   
 
Interacting binding residue analysis 

All interacting binding residues between the 
MEV and TLR-4, TLR-8, HLA-A*24:02, and 
HLA-DRB1*04:05 could be seen in 
Supplementary Fig. 1. In this study, the residues 
used by the receptor to bind with MEV were 
then compared with residues used by each 
receptor to bind with its ligand control. Table 
12 shows the identical residues of each receptor 
used for binding to the MEV and the ligand 
control. Therefore, the residual similarity of the 
receptor being used for the interaction between 

MEV and ligand control could be evidence of 
the ability of the MEV to form an established or 
conserved bound with the designated or hotspot 
residues of the receptor (36-38). 
 
Molecular dynamic simulation  

Molecular dynamic simulation is necessary 
for a vaccine design using a reverse 
vaccinology approach to define the stability and 
physical deformation of the constructed MEV 
in this study. iMODS was chosen to simulate 
the docked complex that assists the user in 
exploring the standard mode analysis (NMA) 
and building the possible transition pathway 
between two homologous structures. iMODS 
provides advanced visualization to illustrate the 
collective motion and observe the flexibility of 
the docking model (32). 

Figures 6A-9A are the normal mode analysis 
of the docked complex between the MEV and 
TLR-4, TLR-8, HLA-A*24:02, and HLA-
DRB1*04:05, respectively. The server used this 
complex mode to determine the ligand-receptor 
complex's stiffness, mobility, and 
deformability. Figures 6B-9B show the 
deformability graph that measured the 
molecule's capacity to deform at each of its 
residues. The region with a higher value 
indicated the flexible region such as the linker 
or spacer, while the lower value indicated the 
rigid protein part. Most of the atoms in this 
study's MEV-receptor complexes showed 
common values in the deformability graph. 
Therefore, MEV-receptor complexes cannot be 
deformed easily since this graph's low value 
corresponds to the complex residue's low 
mobility. This statement was also supported by 
the eigenvalue data (Figs. 6C-9C) that was 
considered high for all the docked complexes.  
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Fig. 6. Molecular dynamic simulation of MEV-TLR4 complex. (A) NMA Mobility (green: MEV and blue: TLR-4); (B) 
deformability; (C) eigenvalue (score = 5.696294 × 10-5); (D) B-factor; (E) variance (red: individual variance and green: 
cumulative variance); (F) Co-variance map (red: correlated motion, white: uncorrelated motion, and blue: anti-correlated 
motion); (G) elastic network. ×TLR, Toll-like receptor. 

 
Eigenvalue, as the parameter representing the 

motion stiffness with the shown value, indicates 
the required energy to deform the structure and is 
expected to be high for the stable docking model. 
Hence, with a high eigenvalue, all the MEV-
receptor interactions could be defined as 
relatively stable complexes in the biological 
environment (42).  

The B-factor graph (Figs. 6D-9D) provided the 
visualization and understanding of the 
comparison between NMA and PDB in                    
the docked complex. The variance graphs in               
Figs. 6E-9E illustrates the individual variance by 
red-colored bars and cumulative variance by 
green-colored bars.   
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Fig. 7. Molecular dynamic simulation of MEV-TLR8 complex. (A) NMA Mobility (green: MEV and blue: TLR-8); (B) 
deformability; (C) eigenvalue (score = 5.368788 × 10-5]; (D) B-factor; (E) variance (red: individual variance and green: 
cumulative variance); (F) Co-variance map (red: correlated motion, white: uncorrelated motion, and blue: anti-correlated 
motion); (G) elastic network. MEV, multi-epitope vaccine; TLR, Toll-like receptor 

 
The cumulative variance of all MEV-

receptor complexes is higher than the individual 
variance. Co-variance map (Figs. 6F-9F) and 
elastic network (Figs. 6G-9G) describe how 
correlated and flexible the motion of each 

protein residue is in its standard mode analysis 
(32,43) The co-variance map matrix indicates 
the correlation between pairs of residues by 
calculating them using Cα Cartesian 
coordinates.  
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Fig. 8. Molecular dynamic simulation of MEV-HLA-A*24:02 complex. (A) NMA Mobility (green: MEV and blue: HLA-
A*24:02); (B) Deformability; (C) Eigenvalue (score = 2.361620 × 10-5); (D) B-factor; (E) variance [red: individual 
variance and green: cumulative variance); (F) Co-variance map (red: correlated motion, white: uncorrelated motion, and 
blue: anti-correlated motion); (G) elastic network. MEV, multi-epitope vaccine; HLA, human leukocyte antigen. 

 
The red-colored region showed the 

correlated experience motion between pairs of 
residues. In contrast, the uncorrelation motion 
is shown by the white and blue regions for the 
anti-correlated motion (44). Moreover, the 

elastic network model describes coarse-grained 
protein as the paired harmonic oscillator 
network. This graph demonstrated the rigidity 
of the junction between the pairs of 
corresponding atoms, with the darker area (the 
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grey area) showing the more rigid junction. By 
evaluating the co-variance map and elastic 
network of the MEV-receptor complexes in this 
study, it could be concluded that the region 
which indicated the highest correlated                      
motion (red-colored in the Co-variance map) 

lay on the region representing the high degree 
of stiffness (grey-colored in the elastic network) 
(45).  

The DNA sequence of MEV was adapted per 
codon usage of the human (Homo sapiens) 
expression system (Supplementary Table 7).  

 

 
Fig. 9. Molecular dynamic simulation of MEV-HLA-DRB1*04:05 complex. (A) NMA Mobility (green: MEV &                   
blue: HLA-DRB1*04:05); (B) deformability; (C) eigenvalue (score = 3.025696 × 10-5); (D) B-factor; (E) variance (red: 
individual variance and green: cumulative variance); (F) Co-variance map (red: correlated motion, white: uncorrelated 
motion, and blue: anti-correlated motion); (G) elastic network. MEV, multi-epitope vaccine; HLA, human leukocyte 
antigen. 
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The codon-optimized DNA has a codon 
adaptation index (CAI) score of 0.91 and a GC 
content of 59.85%. CAI quantifies the 
similarity of codon usage in the expressed gene 
with the synonymous codon frequency of the 
reference set (host target). The CAI score of 1 
is considered perfect for the gene expression of 
the host target, while a score of > 0.8 is 
predicted to be highly expressed in that 
particular organism. Furthermore, guanine-
cytosine content (GC-content) is commonly 
used in codon optimization evaluation since the 
organism species has different GC-content, 
which means every species has its preference 
for GC in their genome expression. According to 
the International Human Genome Sequencing 

(2001), GC content in the human genome is 
within 35-60%, with an average of 41%.  

A set of DNA sequences that encodes the 
self-amplifying mRNA vaccine was inserted 
into the multiple cloning site (MCS) of the 
pcDNA3.1(+) (Fig. 10). The whole plasmid 
will be employed as the cloning vector, while 
the insert itself, along with the T7 promoter 
from the backbone plasmid, will serve as the 
template for the mRNA production. This DNA 
insert consisted of the 5’UTR of VEEV, the 
precursor of the non-structural polyprotein 
(nsP1, nsP2, nsP3, nsP4) of VEEV, the non-
coding segment of VEEV, tPa signal sequence, 
MEV, and the 3’UTR of VEEV 
(Supplementary Table 8).  

 

 
Fig. 10. Cloning vector for mRNA-vaccine production. The DNA insert (started from the 5’UTR until the 3’UTR (shown 
in pink color) was cloned at the MCS of pcDNA3.1(+). This plasmid should be linearised using SnaBI and XbaI restriction 
enzyme to get the sequence of interest (started from T7 promoter (shown in red color) until the 3’UTR). UTR, 
Untranslated terminal region; NSP, non-structural polyprotein; VEEV, Venezuelan equine encephalitis virus. 
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The 5’UTR (shown in pink at the plasmid in 
Fig. 10) at the mRNA (a positive RNA strand) 
plays a role in the replication process by 
creating a stem-loop structure specialized as the 
core promoter for the recognition of RdRp in 
the replication initiation process. Meanwhile, 
the part of the core promoter at the negative 
strand has been taken by the 3’UTR on the 
negative strand (44). 

The nsP1-nsP4 of VEEV, shown in green 
color in Fig. 10), functions as the replication 
machinery for the RNA sequence that was 
chosen to be added to this vaccine construction 
to give the self-amplifying capacity in the host 
cell. nsP1 gene encodes the methyltransferase 
and guanylylation, the enzyme responsible for 
the 5’capping process of the RNA sequence. It 
also contains a 51-nt conserved sequence 
element, which is the essential part that 
somehow affects the effectiveness of 
recognizing the viral RNA core promoter 
element by the virus replication complex. nsP2 
has the autolytic activity that cleaves the viral 
polyproteins in individual nsp-1, nsp-2, nsp-3, 
and nsp-4 proteins. It also has 
methyltransferase activity and is responsible for 
regulating the minus-strand synthesis along 
with the nsP4. This RNA-minus strand 
functions as the template for replicating mRNA 
(positive-strand), which is the template for 
protein translation. 

Meanwhile, no defined functions have been 
assigned to the nsP3 protein. However, it was 
hypothesized that the hypervariable domain in 
the nsP3 gene determines the interaction with a 
cellular protein involved in the replication. 
Lastly, the nsP4 encodes the RdRp (RNA-
dependent RNA polymerase) enzyme 
responsible for synthesizing the plus and minus 
strands of the RNA (44). The VectorBuilder 
optimized these DNA sequences of 
polyproteins to increase the efficiency of the 
translation of this replication complex in the 
human cell (45). 

The sequence after the nsP4 is a non-coding 
segment (shown in grey in Fig. 10) or short 
UTR from VEEV. This segment contains the 
promoter that functions as the recognition site 
of the RdRp for the replication of its 
downstream (46). Meanwhile, the downstream 
part consisted of 2 features: the tPa signal 

sequence (shown in light purple color in                   
Fig. 10) and the MEV (shown in dark purple 
color in Fig. 10) as the antigenic substances in 
this vaccine. The tPa signal sequence acts as the 
heterologous targeting signal sequence to 
traffic the protein to the cell secretion pathway 
to increase its expression in the extracellular. 
This has been shown to enhance the strength of 
the immune response against antigenic peptides 
containing this signal sequence since these 
secreted peptides will be recognized by the B-
cell receptor, which is further activated to 
produce specific antibodies, and also to 
facilitate the presentation through the HLA II 
pathway for T CD4+ priming which further 
contributes in the cellular immune response.  

As the cloning vector, this plasmid contains 
f1 origin of replication (ORI) and pUC ORI 
(shown in yellow color at the plasmid in Fig. 
10) and ampicillin resistance (shown in light 
blue color in Fig. 10). The ORI is necessary for 
the DNA plasmid replication in the bacterial 
cell that acts as the recognition site of the DNA 
polymerase of the compatible bacterial strain. 
Furthermore, ampicillin resistance is the 
selectable marker that encodes the bacterial 
host cell. 

As the template for mRNA production 
through the in vitro transcription, the sequence 
of interest (from the T7 promoter until the 
3’UTR of the insert) should be obtained by 
linearizing the plasmid with the restriction 
enzyme on the specific sites. This study 
suggested using the SnaBI restriction enzyme, 
whose site is upstream of the T7 promoter and 
XbaI, which is downstream of the 3’UTR. This 
T7 promoter (shown in red in Fig. 10) functions 
as the recognition site of T7 RNA polymerase 
used in the in vitro transcription process for 
mRNA production. 
 

DISCUSSION 
 

Vaccination is well-known as one of the 
most effective means of preventing the spread 
of a contagious disease. Therefore, a reliable 
platform that enables a cost-effective vaccine 
development within a short period is urgently 
needed to generate vaccines for any 
transmissible disease. Furthermore, the mRNA-
based vaccine has been a promising platform to 
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expedite large-scale vaccine development, 
especially in the pandemic era, since it requires 
a shorter time and a lower cost of research and 
manufacturing. These considerations 
encouraged us to design a self-amplifying 
mRNA platform that encodes a multi-epitope as 
the antigenic substances to induce the specific 
immune response. Although this study only 
focused on the design of the COVID-19 
vaccine, this platform is presumably applicable 
for other diseases by replacing the antigenic 
peptide with the other protein target (1). 

The epitopes used for the MEV construction 
in this study were predicted from the spike and 
nucleocapsid protein region of the SARS-CoV-
2 samples submitted by Southeast Asia 
countries to the GISAID database. Based on 
previous studies, SARS-CoV-2 transmission is 
affected by the climate since the spread of these 
viruses involves the aerial transmission of 
respiratory droplets or fomites, exposing the 
virus to an external environmental condition in 
which transmission occurs. Therefore, SARS-
CoV-2 from Southeast Asia was selected as the 
sample in this study since nearly all countries in 
this region have a similar climate pattern to 
Indonesia which is also located in this area (47). 

Spike protein was chosen to be the protein 
target of this vaccine due to its essential role in 
viral pathogenicity, particularly in the 
attachment of the virus with the human receptor 
ACE-2. The specific immune response towards 
this protein is expected to prevent the entry of 
the virus into the host cell (48). However, the 
spike region has been described as having a 
high mutation rate as it was found that 80% of 
the genome mutation occurred in this region. 
This mutation may reduce the vaccine’s 
effectiveness due not to producing specific 
immune responses towards the mutated region 
(49). Consequently, this study also chose 
nucleocapsid, the essential protein for viral 
genome replication, to target the designed 
vaccine as a representative antigen for 
activating the cellular immune response. It can 
induce non-neutralizing antibodies responsible 
for signaling the other immune cells to 
eliminate infected cells (43,50). 

Based on the epitope prediction from the 
consensus sequence of those two immunogenic 
proteins of SARS-CoV-2, this study obtained 

seven B-cell epitopes and four T-cell epitopes 
(Tables 1 and 2). Through the alignment of the 
consensus sequence and the reference sequence 
of each protein (annotated SARS-CoV-2 
genome), one B-cell epitope was predicted to 
represent the N-terminal domain of spike 
protein (Table 1) that is expected to trigger the 
production of neutralizing antibodies that block 
the binding of this surface protein to the ACE-
2 of human cell. This statement was supported 
by a study in China that N-terminal domain-
specific antibodies were expressed at a quite 
high level in COVID-19 patients (48). On the 
other hand, the six different B-cell epitopes 
represent the middle portion of the 
nucleocapsid (Table 1) that was previously 
defined to have the capacity to induce the non-
neutralizing antibody toward this coronavirus 
(50). A study in Cambridge described that the 
intracellular receptor TRIM21 could recognize 
the complex of anti-N antibodies with its 
antigenic peptide. This recognition will further 
direct the proteasome’s peptide-antibodies 
complexes to be degraded. The HLA will 
present these small peptide fragments to the 
infected cell’s surface as the signal for 
cytotoxic T-cells, which further trigger the 
apoptotic mechanism of the cell. 

It should be noted that the B-cell epitope in 
this study has also been screened by its capacity 
to be recognized by HLA class II as the allele 
responsible for the antigen presentation to the 
HTL. Generation of long-lasting B-cell 
memory requires the involvement of HTL to 
induce the differentiation of the B-cell to the 
memory cell. This memory cell is essential in 
the recurring infection caused by the same virus 
with similar antigenic peptides. 

Meanwhile, the selected T-cell epitope in 
this study represents the receptor binding 
domain and N-terminal domain of spike 
protein. None of the T-cell epitopes was 
adopted from the nucleocapsid since none of 
the predicted epitopes met all the set 
requirements. These final selected epitopes 
used for the MEV construction were recognized 
by both HLA class I and HLA II, commonly 
distributed among the Indonesian population. 
The HLA receptors, specifically at the peptide-
binding region, are highly polymorphic, 
meaning they have many alleles with different 
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binding specificity. In general, every human-
ethnic or population in a particular region has 
its specific alleles. The vaccine in this study 
was mainly designed for the Indonesian 
population. Therefore, highly distributed alleles 
among the people of this area were used in the 
epitope determination and molecular docking 
analyses (17). These T-cell epitopes are 
expected to induce the cytotoxic activity by 
CTL towards the infected cells and the 
regulation activity by HTL.  

Both epitopes have been confirmed to be 
highly conserved with 100% minimum identity 
based on the comparison with the reference 
sequence using the IEDB conservancy analysis. 
The chosen highly conserved epitopes are 
intended to broaden the coverage of the vaccine 
towards various circulating SARS-CoV-2 
strains, including new mutants (17). Therefore, 
the selected epitopes could be considered safe 
in addition to the conservancy. Furthermore, 
they can induce a specific immune response 
since they were defined as highly antigenic, 
non-allergen, non-toxic, and hydrophilic (12-
15). 

According to the molecular docking 
analysis, each epitope has a good binding 
affinity with HLA receptors in a stable docking 
model and was also predicted to bind with 
several active or hotspot residues of the HLA 
receptor. These hotspot residues are commonly 
known as the specialized residues for binding 
receptors with their ligand. Consequently, if a 
binding between a new ligand and a receptor 
occupies those critical residues in their 
interaction, it will intensify the possibility of the 
binding occurrence (38). 

This study aimed to design a multi-epitope 
vaccine after considering its advantage over a 
single epitope). Applying this multi-epitope 
hopefully increases the vaccine coverage 
toward the natural viral antigen diversity as it 
has several antigenic peptides representing 
more than one antigenic region. Furthermore, 
using multiepitope-based vaccines increase the 
population coverage for Indonesia as the 
primary target population since it contains 
different epitopes that could be recognized by 
distinct HLA alleles. This study also revealed 
that each epitope covered only 25.44-72.72% of 
the population. However, when combined as a 

MEV, the total population coverage of this 
construction was 99.26%. Hence, these 
designed antigenic substances can be 
considered potential vaccine candidates with 
broad population coverage for the Indonesian 
population to fight against SARS-CoV-2. 

MEV in this study was characterized as a 
highly antigenic peptide with a satisfying 
antigenicity score (0.8701). This property 
indicated the capacity of the vaccine to be 
specifically recognized by the adaptive immune 
receptor (52). It was also defined as non-
allergen, which means this peptide sequence of 
MEV has no similarity with allergenic 
substances in both server databases used for the 
allergenicity prediction. Therefore, it is 
expected to have a low risk of allergenic 
reactions within the body (53). The negative 
GRAVY score revealed that the residues of 
MEV were easily accessible by the solvent 
(water). This property will facilitate the 
immune receptor’s binding with this ligand 
(54). 

Furthermore, the tendency of this vaccine to 
be presented outside the membrane based on 
this transmembrane topology prediction will 
make it more accessible to the immune receptor 
(55). Physicochemical properties analysis of 
this MEV found that the half-life of this peptide 
was very short (only 1 h in mammalian cells). 
However, this vaccine was designed to be an 
mRNA vaccine with the capacity to express its 
replication machinery. This amplifying feature 
will enable mRNA encoding multi-epitope 
sequences to be replicated in human cells and 
further enhance the expression of this multi-
epitope as antigenic substances of this vaccine 
(3).  

Secondary structure analysis of MEV 
revealed that this structure is dominated by the 
coil (76.95%). Furthermore, most of the 
residues of MEV were predicted to lie on the 
exposed region based on the solvent 
accessibility analysis. Suppose residues can be 
accessed by the solvent easily. In that case, they 
tend to interact easily with the immune 
receptors, usually bound with exposed residues 
of their ligand (56). 

Several validation criteria also evaluated the 
generated tertiary (3D) structure of MEV to 
assess its eligibility as a protein model for 
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molecular docking studies. According to this 
validation step, the presented MEV (Fig. 4) was 
the best structure among the other designed 
MEV in this study (data not shown) since it met 
all qualifications to be considered a valid and 
good-quality protein model (27,28, 39). 

The 3D model of MEV was docked with 
several immune receptors, such as TLR-4, 
TLR-8, HLA-A*24:02, and HLA-
DRB1*04:05. TLR-4 was chosen because it 
was known to have a strong binding affinity 
with spike glycoprotein as the immunogenic 
part of SARS-CoV-2 (57). Meanwhile, TLR-8, 
as the well-known innate receptor responsible 
for recognizing ssRNA, was also chosen since 
the genetic material of SARS-CoV-2 as the 
virus target of this vaccine uses ssRNA(+) as 
their genome. Moreover, the binding of these 
two types of TLR with their ligand activates the 
signaling pathway essential for IFN production, 
which acts as the crucial antiviral cytokine (58). 
Therefore, the capacity of MEV to interact with 
these two types of TLR was also confirmed by 
molecular docking. Thus, the recognition of 
TLR to the MEV as its potential ligand is 
expected to activate TLR to execute the 
intracellular signaling to trigger the antiviral 
response within the body. Moreover, HLA-
A*24:02 (representative of HLA class I) and 
HLA-DRB1*04:05 (representative of HLA 
class II) were chosen for the docking analysis 
because they were recorded as alleles with a 
quite high frequency of distribution among the 
Indonesian population (59). 

The docking score of the MEV-receptor 
complex indicated the capability of MEV to 
bind firmly to each receptor with minimal 
energy (20,34,35,40,41). It was also supported 
by the findings of the identical residues that are 
used by the receptors for their interaction with 
MEV and their ligand controls that predict the 
potency of MEV to bind with the essential 
residues of receptors that were commonly 
specialized for ligand interaction (36-38). 
Moreover, the molecular dynamic simulation 
was done to observe the stability, flexibility, 
and physical deformation of the MEV-receptor 
complexes. There are several detected 
hydrogen bonds between MEV and the 
receptors being used in this study 
(Supplementary Fig. 1). This molecular bond 
may indicate that MEV will have a quite stable 

interaction with the receptor since the hydrogen 
bond will create the non-covalent interaction 
which produces a stable force in the biological 
system. Moreover, the salt bridges known as 
contributors to the protein interaction 
specificity are also found in the interaction 
between the MEV and those receptors. These 
molecular bonds showed that all the docking 
complexes are predicted to be stable or not 
easily deformed in the biological environment. 
(32,42,43).  

Figures 6-9. show the molecular dynamics 
simple simulation of the KV-1 docking 
complexes with TLR-4, TLR-8, HLA-A*24:02, 
and HLA-DRB1 using iMODS. Figures 6A-9A 
show the NMA of the complexes between KV-
1 and various receptors enumerated by iMODS 
to determine the rigidity in mobility and 
residual deformability of the complexes. In 
Figures 6B-9B, it can be seen that most of the 
amino acid residues show low deformability 
values, indicating that the docking complex is 
not easily deformed. Per the results in the 
deformability graphs (B), it can be seen that the 
eigenvalue which shows the energy required to 
deform the structure (Figs. 6C-9C) is high, 
indicating that the docking complex is not 
easily deformed and is predicted to be stable in 
the biological environment. The obtained                   
B-factor parameter (Figs. 6D-9D) indicates that 
the docking complex does not easily undergo 
mobilization that disrupts the interaction or 
bond with each other. Furthermore, the variance 
graphs (Figs 6E-9E) show that the cumulative 
variance of the docking complex is higher                   
than the individual variance. The covariance 
map and elastic network are the two parameters 
that describe how correlated movement of 
protein residues and how flexible the     
movement of each residue is in NMA. The 
covariance map indicates the correlation 
between residue pairs, while the elastic network 
demonstrates the stiffness of the connections 
between atom-atom pairs. The co-variance  
map in Figs. 6F-9F and elastic network in                 
Figs. 6G-9G are interconnected where the 
regions that show the highest correlated              
motion (shown in red color) on the co-variance 
map lie in the region that represents a                   
high degree of stiffness, which is shown                   
in a dark grey area on the elastic network              
graph. 
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After the codons of the MEV construct were 
adapted as per codon usage of the human 
expression system, this MEV-encoded DNA 
sequence (CAI = 0.91; GC = 59.85%) was 
inserted into the MCS of pcDNA3.1(+), 
particularly at the downstream of the T7 
promoter, alongside with the optimized nsP1-4 
genes of VEEV (CAI = 0.90; GC=56.6%) that 
encode the replication machinery, tPa signal 
peptide sequence that leads the antigenic 
peptide to the secretion pathway, and other 
complementing features (5’UTR, non-coding 
segment, and 3’UTR of VEEV) that act as the 
recognition site of RdRp and support the 
stability of RNA sequence. The optimized 
DNA sequences in this study showed CAI score 
and GC content within the ideal parameter 
criteria range. Therefore, the transcribed 
mRNA from this MEV-encoded DNA was 
predicted to be highly expressed in human cells  

As the cloning vector, this plasmid was 
designed to be amplified in bacterial cells by 
containing f1 ORI and pUC ORI that act as the 
recognition site during the initiation of DNA 
replication and the ampicillin resistance gene as 
the selectable marker to facilitate the screening 
process. As the template for mRNA production 
through the in vitro transcription, the plasmid 
should be linearized by SnaBI using the SnaBI 
restriction enzyme, whose site is located 
upstream of the T7 promoter and XbaI, whose 
site is located downstream of the 3’UTR to 
obtain the sequence of interest as the template 
of mRNA (started from the T7 promoter until 
the 3’UTR of the insert). The generated mRNA 
sequence from the in vitro transcription of this 
sequence of interest is expected to be a potential 
candidate for the self-amplifying COVID-19 
mRNA vaccine. Furthermore, by having the 
capability to replicate themselves in human 
cells, the expression level of multi-epitope as 
antigenic peptides is expected to be 
significantly increased. Therefore, it will 
eventually reduce the required dose for the 
vaccine shot and further streamline the 
manufacturing cost (3). 
 

CONCLUSION 
 

The recent COVID-19 pandemic has caused 
hundreds of people and a global financial crisis 

in Indonesia. As a contribution to the                 
vaccine development for preventing disease 
transmission among the Indonesian population 
this study designed a multi-epitope self-
amplifying mRNA vaccine confirmed to have 
high coverage for this population. The 
capability to create a strong and stable 
interaction with various immune receptors 
(TLR-4, TLR-8, HLA class I and II) leads to the 
expectation of the efficacy of this MEV in 
inducing the specific antiviral immune 
response. The final plasmid construction 
containing the multi-epitope DNA sequence 
and nsP1-4 VEEV gene that encodes the 
replication machinery of RNA serves as the 
cloning template and the mRNA production by 
the in vitro transcription. The proposed vaccine 
from this study can be considered a potential 
vaccine candidate for development. However, 
further experimental research should 
demonstrate its function and efficacy. 
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