
Research in Pharmaceutical Sciences, June 2023; 18(3): 326-335 School of Pharmacy & Pharmaceutical Sciences 
Received: 28-05-2022 Isfahan University of Medical Sciences 
Peer Reviewed: 12-08-2022 
Revised: 16-10-2022 
Accepted: 07-03-2023 
Published: 14-03-2023 

 Original Article 
 

 
*Corresponding author: F. Moradpour 
Tel: +98-8334274618, Fax: +98-8334276477 
Email: farshad.moradpour.bio@gmail.com 
 

 
The effects of kindling during pregnancy on long-term potentiation 
(LTP) induction and M1 muscarinic acetylcholine receptors in male 

rat offspring 
 

Ali Pourmotabbed1, Razieh Naghizadeh1, Farshad Moradpour1,2,*, Mozhgan Veisi1,  
Seyed Ershad Nedaei1

,
 Fatemeh Zarei1

, and Zahra Salimi1 

 
1Department of Physiology, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran.  

2Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, BC V8P 5C2, Canada. 

 
Abstract 

 
Background and purpose: Neonates of pregnant women with epilepsy may compromise normal 
neurodevelopment and hippocampal morphology. Memory and learning disorders and a decrease in verbal IQ 
scores are seen in these children later in life. In the previous study, we suggested that the central muscarinic 
cholinergic receptors had an important role in learning and memory deficits induced by prenatal 
pentylenetetrazol-kindling in pups born to kindled mothers. This study aimed to investigate the effects of 
kindling during pregnancy on long-term potentiation (LTP) induction and the role of M1 muscarinic 
acetylcholine receptors in the hippocampus of male offspring.  
Experimental approach: Twenty female Wistar rats were divided into two groups on the 13th day of their 
gestation (kindled and control; n = 10). Animals in the first group were kindled by i.p. injections of 25 mg/kg 
body weight pentylenetetrazol every 15 min until seizures occurred and the control group received normal 
saline. The effect of maternal seizures and perfusion of specific M1 muscarinic receptors antagonist 
(telenzepine at doses of 0.01, 0.1, and 1 nmol) on the LTP induction of 80 pups were tested at 12 weeks of age 
by field potential recordings.  
Findings/Results: The results of the electrophysiological study revealed that recurrent seizures during 
pregnancy impaired field excitatory postsynaptic potentials (fEPSP)-LTP induction and normal development 
of M1 muscarinic receptors in the hippocampus of male offspring. Also, the results demonstrated that maternal 
seizure did not significantly affect the paired-pulse indexes and population spike-LTP in the hippocampus of 
male offspring. 
Conclusion and implications: Our study showed that recurrent seizures during pregnancy cause impaired 
fEPSP-LTP induction and abnormal development of the M1 muscarinic receptor in the hippocampus. 
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INTRODUCTION 

 

Epilepsy is one of many chronic 
neurological diseases, which is characterized 
by recurrent episodic seizures (1,2). The            
World Health Organization estimates that 
approximately 50 million people worldwide 
have been suffering from epilepsy. It is also 
estimated that the prevalence of epilepsy is 
between 25% and 40% in women of 
childbearing age (3). Epilepsy in pregnant 
women can lead to abnormal nerve 
development, changes in the morphology of the 

hippocampus, and consequently, impairments 
in learning and memory and reducing verbal IQ 
scores in their offspring (4-6). 

Long-term potentiation (LTP) is described 
as long-lasting activity-dependent enhancement 
in synaptic strength that is commonly regarded 
as the closest neural model for the molecular 
and cellular mechanism complicated in learning 
and memory.  
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LTP in synaptic transmission expansively 
can be evaluated in the hippocampal CA1 
region (7,8). A previous study reported that 
acetylcholine stimulates pyramidal neurons of 
the CA1 area by stimulating the M1 receptor 
and can induce LTP (9). Moreover, Le Duigou 
et al. in vitro studies showed that blockage of 
M1 muscarinic acetylcholine receptors                   
(M1 mAchRs) with telenzepine could prevent 
the induction of non-NMDA form of LTP (10). 
Muscarinic cholinergic receptors also play an 
important role in learning and memory. It is 
well established that muscarinic receptors                
(M1-M3) are expressed in the hippocampal 
formation, among them, M1 muscarinic 
receptor subtype is widely expressed in the 
soma and dendrite of pyramidal cells of the 
CA1 area (11). 

It is reported that a single episode of a 
neonatal seizure can cause disturbance in 
spatial memory as well as impairment of LTP 
induction in the CA1 region of the 
hippocampus in adult rats (12). Our previous 
studies demonstrated that central muscarinic 
receptors are involved in spatial memory and 
passive avoidance learning impairments in 
adolescent offspring of pentylenetetrazol-
kindled pregnant rats (13,14). However, the 
effect of maternal seizure on offspring synaptic 
plasticity and its mechanism has not been 
studied. Therefore, we examined the effects of 
kindling during pregnancy on LTP induction 
and the role of M1 muscarinic acetylcholine 
receptors in the hippocampal of adolescent 
male offspring by field potential recordings. 
 

MATERIAL AND METHODS 
 
Animals 

All procedures were performed according to 
the Guide for the Care and Use of Laboratory 
Animals, eighth edition, 2011 and approved by 
the local Animal Ethics Committee of KUMS 
(Ethical No. IR.KUMS.REC.1397.022). Ten 
male and twenty female Wistar rats aged 3-4 
months at the beginning of the experiments 
were purchased from the animal house of 
Kermanshah University of Medical Sciences 
(KUMS), Iran. The animals were kept in 
Plexiglas cages under standard temperature            
(23 ± 2 °C) and were exposed daily to                         
a 12/12-h light/dark cycle (lights on                                

at 07:00 AM) and free access to standard 
laboratory rat diet and water. 
 
Experimental design 

Before the experiment, the rats spent two 
weeks adapting to the environment and 
laboratory conditions, then 3 female rats with a 
male rat were placed in each cage for mating. 
Vaginal smears were performed on the females 
every morning (07:00-08:00 AM) to check the 
presence of sperm. The presence of sperm is 
marked as day 1 of pregnancy (14,15). Each 
pregnant rat was transported to another cage 
and stored singly (E0 being the day on which a 
positive vaginal smear was observed). 

The effect of the maternal seizure (on the 
13th day of pregnancy) on the hippocampal LTP 
of the 12-week-old offspring was investigated 
(5). Twenty pregnant rats were divided into two 
groups (kindled and control) consisting of                   
10 animals in each group. Seizures were 
induced by repetitive intraperitoneal injections 
of 25-mg/kg body weight pentylenetetrazol 
(Sigma, St. Louis, MO, USA) every 15 min 
until seizures occurred. The total dose did not 
exceed 75 mg/kg (three injections) (16). The 
control group received an equipollent volume 
of normal saline on a similar plan. Instantly 
after injection, seizure activity was observed 
and scored according to the Racine method (17) 
and the modified method by Becker et al. (18), 
as follows: stage 0, no response; stage 1, ear and 
facial twitching; stage 2, myoclonic jerks 
without rearing; stage 3, myoclonic jerks, 
rearing; stage 4, turn over into side position, 
clonic-tonic seizures, and stage 5, turn over into 
back position, generalized clonic-tonic 
seizures. Animals that reached stage 4 or 5 
seizures were selected for this study. After 
parturition, pups were counted and weighted. 
Pups were housed with their mothers until 
weaning (21st day of postnatal) (19). To reduce 
possible parturition effects, a maximum of four 
male offspring from any parturition were used 
in this experiment. Animals in the kindled 
group (n = 40) and the control group (n = 40) 
were divided into four subgroups (n = 10). The 
pups in subgroups were allowed to grow to             
12 weeks of age. All of the subgroups were used 
for the electrophysiological study in four doses 
0, 0.01, 0.1, and 1 nmol of antagonist M1 
mACh R (telenzepine). 
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Electrophysiological study 
Slice preparation 

The method used in this study to prepare the 
hippocampal slices was according to the 
previous protocol performed in our laboratory 
(20,21). Overall, eighty male rats 12 weeks old 
were anesthetized with chloroform and 
decapitated. Then, their brain was kept in the 
ice-cold artificial cerebrospinal fluid (aCSF) 
consisting of NaCl 125 mM, KCl 2.5 mM, 
NaHPO4 1.25 mM, NaHCO3 25 mM, CaCl2 2 
mM, MgCl2 1.3 mM, and glucose 10 mM              
(pH = 7.4 ± 0.5, 290-300 mOsm) and bubbled 
with a gas mixture of O2 95%: CO2 5% 
(carbogen) for 1 min.  

Right hippocampi were slowly removed, and 
4 to 5 thick slices (400 µm) of the dorsal 
hippocampus were cut with a vibratome slicing. 
The slices were immediately put in a recovery 
chamber consisting of aCSF at room 
temperature and then bubbled with carbogen. 
All slices were maintained in the recovery 
chamber for at least 1.5 h. Then, slices were 
transferred to a submerged recording chamber. 
 
Electrophysiological recording 

The slices were perfused with carbonated 
aCSF (warmed to 32 ± 2 °C) at a rate of 2 
mL/min in the recording chamber. The glass 
micropipettes (Sarasota, FL 34240-9258, USA) 
were pulled using a vertical programmable 
microelectrode puller (PC-100, Narishige, 
Japan) and filled with aCSF. Electrode tip 
resistance was 2-5 MΩ. Extracellular field 
excitatory postsynaptic potentials (fEPSPs) and 
population spike (PS) were recorded by placing 
microelectrode on stratum radiatum and 
stratum pyramidale of CA1 area, respectively. 
A twisted pair of Teflon-coated stainless steel 
wires were placed on the stratum radiatum to 
stimulate Schaffer collateral afferents. Stimuli 
consisted of constant current rectangular pulses 
(200 µs, 0.033 Hz, 10-120 µA) delivered by a 
stimulator-isolator (A365R, WPI, Sarasota FL, 
USA). Recording signals were amplified by an 
amplifier (D3111; Science Beam, Iran), 
displayed on a computer screen, and saved at a 
sampling rate of 10 kHz on a personal computer 
hard disk for offline analysis. 

Evoked field potential recording was started 
15 min after putting up electrodes. The 
recording was continued until a stable baseline 

for 10 min (less than 10% variation) then, 
telenzepine was perfused. Telenzepine was 
dissolved in distilled water and was diluted in 
aCSF to final concentrations  of 0, 0.01, 0.1, or  
1 nM for each experimental group. Ten min 
after stable baseline  recording, eight gradual 
increases of stimulus intensities were used to 
define the input/output curve. The lowest 
intensity that evoked a measurable response 
was considered as the  threshold intensity (T), 
and 2T-8T until the maximum stimulus 
intensity  (120 nµ) were other tested intensities. 
The slope of the downward deflection of  field 
excitatory postsynaptic potential (fEPSP) was 
assumed as  an index of field synaptic response 
(fEPSP-I). The saturation of  elicited response 
was obtained as over 120 µA; therefore, it was  
possible to characterize the stimulation 
intensity as the percentage  of the maximum 
response. After the development of the 
input/output curve, the  stimulus intensity that 
elicited 40-50% of the maximum response was 
adjusted as test pulse 1 (T1) and applied for                  
5 min. Paired pulse responses were taken at an 
inter-pulse interval of 10, 20, 80, 100, and               
200 ms for 2 min. Fifteen min later                   
high-frequency stimulation (HFS, a train of     
100 stimuli at 100 Hz) was induced for 
induction of LTP, with the  recording continuing 
for 60 min. The second paired pulse was taken, 
then an additional input/output curve was 
created and the experiment was terminated.  
 
Statistical analysis 

Statistical analyses were accomplished using 
IBM SPSS Statistics 24 for Windows. The 
difference between the control and kindle 
groups was analyzed using a t-test. Two-way 
ANOVA was conducted to analyze the effect of 
seizure and telenzepine on the LTP induction. 
Further analysis for multiple comparisons was 
done using the Bonferroni posthoc test. All data 
were presented as mean ± SEM, with a 
significant P-value at the level of less than 0.05 
for all tests. The percentage (%) of changes in 
the amplitude of PS and slope of fEPSP due to 
HFS was normalized in the 10-min baseline 
recording. The averaged response got during 
the last 10-min baseline recording was used as 
a reference, and was compared with the 
averaged response obtained during the 60-min 
post-HFS recording. A potentialize data 
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analysis package (Science Beam, Iran) was 
used to determine the fEPSP or the PS 
magnitude, as previously described (22). Paired 
pulse PS index and paired-pulse index of fEPSP 
were driven from averaged waveforms as the 
pulse2/pulse1 ratio at inter-pulse intervals of 
10, 20, 80, 100, and 200 ms (23,24). 
 

RESULTS 
  
Maternal kindling induces offspring fEPSP 
impairment 

To evaluate the effect of maternal kindling 
on the 13th day of gestation on the offspring 
CA1 area synaptic plasticity, we studied the 
fEPSP-LTP slope and amplitude of PS-LTP in 

the hippocampal CA1 area of 12-week-old male 
offspring born from maternal-kindled (kindled 
group) and non-kindled (control group). 
Analysis of data revealed a significant 
difference in the magnitude of fEPSP-LTP 
between groups (t20 = 3.28). As can be seen, a 
significantly shorter mean fEPSP-LTP slope 
recorded from hippocampal slices of the 
kindled group was observed, compared with the 
analogous value in the control group (Fig. 1A 
and B). However, the analysis of the population 
spike showed that the PS-LTP amplitude 
recorded from hippocampus slices of the 
kindled group had no significant difference 
from those of the control group (t20 = 1.566,                   
P = 0.205; Fig. 1C and D). 

 

 
Fig. 1. The effect of maternal kindling on the fEPSP-LTP and PS-LTP. The magnitude of (A) fEPSP-LTP and (C)                       
PS-LTP changes (%) versus time for hippocampal slices perfused with pure artificial cerebrospinal fluid in the control 
and kindled groups before and after tetanic stimulation; the upward arrows show the moment of high-frequency 
stimulation; solid line represents superimposed fEPSPs and PSs trace at baseline and the dashed line represents 60 min 
after tetanic stimulation, on top of parts A and C, respectively, in the hippocampal CA1 area of control and kindled groups. 
(B) and (D) show the mean values (%) of the fEPSP-LTP and PS-LTP, respectivelyThe data are presented as the                      
mean ± SEM. *P < 0.05 Indicates significant difference with the control group. fEPSP, Field excitatory postsynaptic 
potentials; LTP, long-term potentiation; PS, population spike; LTP, long-term potentiation.  
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The effects of kindling during pregnancy and 
telenzepine on the magnitudes of the fEPSP 
and population spike   

Kindling during pregnancy and telenzepine 
have the same effect on the amount of CA1 LTP 
recorded from slices of male offspring. To 
reveal the role of the M1 muscarinic receptor on 
the LTP induction and the LTP impairment 
effect of maternal seizure, we perfused slices 
taken from offspring of the control and kindled 
groups with 0.01, 0.1, and 1 nM telenzepine. 
Statistical analysis showed that there was a 
significant difference in the slope of fEPSP-
LTP among groups (F[3,72] = 8.425, P = 0.0001; 
Fig. 2). However, there was also an interaction 
between seizure and telenzepine effects, further 

analysis using Bonferroni post hoc showed that 
telenzepine dose-dependently decreased the 
slope of fEPSP-LTP of the control group (Fig. 
2A and C) but had no significant effect on the 
fEPSP-LTP slope of the kindled group (Fig. 2B 
and C). Although, the fEPSP-LTP slope of 0 
and 0.01 nM of telenzepine-treated slices in the 
control group were significantly higher than the 
slope of fEPSP-LTP of 0 nM and 0.01 nM 
treated slices in the kindled group (Fig. 2C) 
there were no significant differences between 
0.1 and 1 nM telenzepine-treated slices in the 
control and kindled groups (Fig. 2C). The 
analysis of PS-LTP did not show any significant 
difference in the amplitude of the PS-LTP in none 
of these experimental groups (P > 0.05, Fig. 3). 

 

 
Fig. 2. The effect of M1 receptor inhibition on the fEPSP-LTP induction. The amount of fEPSP-LTP slope change (%) versus 
time for slices taken from (A) the control group and (B) kindled group that perfused with pure artificial cerebrospinal fluid and 
difference doses of TLZ (0.01, 0.1, and 1 nM); the upward arrows indicate episodes of high-frequency stimulation; solid line 
represents fEPSPs trace in control and kindled groups at baseline and dashed line for 60 min after tetanic stimulation which are 
on top of parts A and B, respectively. (C) The diagram reveals the mean values (%) of the fEPSP-LTP magnitude between 
different groups. The data are presented as the mean ± SEM. *P < 0.05 indicates significant differences in comparison with the 
control group; #P < 0.05 between the specified groups. fEPSP, Field excitatory postsynaptic potentials; LTP, long-term 
potentiation; PS, population spike; LTP, long-term potentiation; TLZ, telenzepine. 
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Fig. 3. The effect of M1 receptor inhibition on the PS-LTP induction. The amount of PS-LTP amplitude change (%) 
versus time for slices taken from (A) the control group and (B) kindled group that perfused with pure artificial 
cerebrospinal fluid and different doses of TLZ (0.01, 0.1, and 1 nM). The upward arrows indicate episodes of high-
frequency stimulation; the solid line represents superimposed PSs trace in control and kindled groups at baseline and the 
dashed line represents 60 min after tetanic stimulation; (C) revealing the mean values (%) of the PS-LTP magnitude 
between groups. The data are presented as the mean ± SEM. PS, Population spike; LTP, long term potentiation; TLZ, 
telenzepine.   
 
 
The effects of kindling during pregnancy and 
telenzepine on the paired-pulse  

Kindling during pregnancy and telenzepine 
did not affect the paired-pulse index recorded 
from slices of male offspring. To determine                   
the effect of maternal seizures and telenzepine 
on neurotransmitter release from presynaptic 

terminals at CA1 synapses, we also                   
examined the paired-pulse population spike 
index and the paired-pulse index of fEPSP. 
There was no significant difference in none                  
of these experimental groups (F[3,71] = 0.973,                   
P = 0.411; Table 1) (F[3,69] = 1.228, P = 0.306; 
Table 2).
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Table 1. The average paired-pulse index of fEPSP was recorded for baseline synaptic response and 60 min after 
induction of HFS in the CA1 region of the hippocampus. 

Pre HFS TLZ (nM) 
Inter-pulse interval (ms) 

10 20 80 100 200 

   Control 

0 2.02 ± 0.16 2.17 ± 0.13 2.07 ± 0.11 2 ± 0.10 1.55 ± 0.08 
0.01 1.6 ± 0.15 1.77 ± 0.09 1.63 ± 0.06 1.55 ± 0.05 1.19 ± 0.04 
0.1 1.83 ± 0.12 1.98 ± 0.07 1.84 ± 0.09 1.67 ± 0.08 1.23 ± 0.08 
1 1.82 ± 0.24 2 ± 0.20 1.95 ± 0.13 1.84 ± 0.11 1.35 ± 0.08 

   Kindle 

0 1.75 ± 0.17 1.87 ± 0.12 1.81 ± 0.08 1.73 ± 0.05 1.36 ± 0.05 
0.01 1.69 ± 0.25 1.97 ± 0.20 1.84 ± 0.13 1.67 ± 0.11 1.23 ± 0.05 
0.1 2.2 ± 0.59 1.89 ± 0.27 1.82 ± 0.17 1.72 ± 0.18 1.24 ± 0.11 
1 2.22 ± 0.18 2.42 ± 0.19 2.24 ± 0.15 2.02 ± 0.14 1.45 ± 0.07 

Post HFS       

   Control 

0 1.31 ± 0.08 1.69 ± 0.10 1.65 ± 0.09 1.55 ± 0.09 1.3 ± 0.09 
0.01 1.34 ± 0.14 1.58 ± 0.10 1.5 ± 0.06 1.44 ± 0.05 1.14 ± 0.03 
0.1 1.87 ± 0.22 2.11 ± 0.19 1.84 ± 0.10 1.74 ± 0.06 1.23 ± 0.04 
1 1.87 ± 0.26 2.06 ± 0.23 1.82 ± 0.17 1.71 ± 0.13 1.25 ± 0.06 

   Kindle 

0 1.48 ± 0.15 1.65 ± 0.12 1.55 ± 0.10 1.58 ± 0.10 1.31 ± 0.05 
0.01 1.61 ± 0.25 1.92 ± 0.18 1.76 ± 0.11 1.68 ± 0.11 1.33 ± 0.07 
0.1 1.71 ± 0.27 1.85 ± 0.17 1.66 ± 0.11 1.64 ± 0.10 1.29 ± 0.10 
1 1.92 ± 0.10 2.03 ± 0.09 1.88 ± 0.08 1.77 ± 0.09 1.38 ± 0.06 

fEPSP, Field excitatory postsynaptic potentials; HFS, high-frequency stimulation; TLZ, telenzepine.  

 
 

Table 2. The average paired-pulse population spike index was recorded for baseline synaptic response and 60 min after 
induction of HFS in the CA1 region of the hippocampus. 

Pre HFS TLZ (nM) 
Inter-pulse interval (ms) 

10 20 80 100 200 

   Control 

0 3.66 ± 0.56 4.27 ± 0.68 4.09 ± 0.57 3.7 ± 0.50 2.5 ± 0.31 
0.01 3.64 ± 0.80 3.27 ± 0.51 2.86 ± 0.34 2.88 ± 0.47 1.75 ± 0.19 
0.1 2 ± 0.39 2.26 ± 0.34 2.33 ± 0.36 2.16 ± 0.35 1.47 ± 0.15 
1 2.86 ± 0.57 3.11 ± 0.55 2.84 ± 0.35 2.64 ± 0.32 1.82 ± 0.13 

   Kindle 

0 7.14 ± 2.36 7.16 ± 2.28 6.94 ± 2.38 7.03 ± 2.66 3.14 ± 0.86 
0.01 3.90 ± 0.97 3.07 ± 0.43 2.81 ± 0.34 2.58 ± 0.30 1.8 ± 0.22 
0.1 3.11 ± 0.56 4.06 ± 1.06 3.31 ± 0.66 3.3 ± 0.76 2.17 ± 0.47 
1 2.74 ± 0.24 2.94 ± 0.14 2.59 ± 0.12 2.32 ± 0.11 1.59 ± 0.05 

Post HFS       

   Control 

0 1.42 ± 0.12 1.54 ± 0.10 1.59 ± 0.10 1.5 2± 0.08 1.38 ± 0.08 
0.01 2.08 ± 0.33 2.09 ± 0.30 1.9 ± 0.24 1.73 ± 0.19 1.47 ± 0.12 
0.1 1.96 ± 0.27 1.97 ± 0.25 1.87 ± 0.21 1.75 ± 0.21 1.41 ± 0.13 
1 2.77 ± 0.73 3.37 ± 1.19 2.66 ± 0.69 2.41 ± 0.59 1.72 ± 0.28 

   Kindle 

0 2.55 ± 0.50 2.6 ± 0.54 2.36 ± 0.49 2.21 ± 0.40 1.71 ± 0.28 
0.01 3.48 ± 1.13 2.95 ± 0.65 2.58 ± 0.45 2.52 ± 0.47 1.72 ± 0.22 
0.1 3.37 ± 0.99 5.09 ± 2.57 3.42 ± 0.92 4.1 ± 1.88 4.07 ± 2.48 
1 2.17 ± 0.17 2.43 ± 0.20 2.13 ± 0.16 1.9 ± 0.13 1.46 ± 0.05 

HFS, high-frequency stimulation; TLZ, telenzepine. 

 
DISCUSSION 

 
The current study demonstrated that 

maternal seizure at thirteen days of gestation 
reduced the magnitude of fEPSP-LTP recorded 
from the hippocampus CA1 area of the male 
offspring. These findings are important because 
they suggest that seizure during gestation could 
lead to disruption of synaptic function and LTP 
induction in the offspring. It has been indicated 

that the thirteen days of gestation is a critical 
and important time point for the development 
of the hippocampus (25,26). Clinical and 
experimental studies have revealed that 
seizures during gestation can result in persistent 
functional abnormalities in offspring (6,13). 
Therefore, maternal seizure at this time point 
has a long-lasting effect on the hippocampal 
synaptic plasticity which will affect offspring 
behavioral response patterns. 
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It is known that the activation of M1 
mAchRs in humans with cognitive impairment 
(27) can improve memory formation. 
According to the important role of synaptic 
plasticity in memory processes, it is suggested 
that acetylcholine release improves memory by 
modulating the induction of synaptic plasticity 
(28). Indeed, the induction of hippocampal 
synaptic plasticity requires muscarinic receptor 
activation (29). It has been documented that 
acetylcholine stimulates pyramidal neurons of 
the CA1 area by stimulating the M1 receptor 
and can induce LTP (9). Based on the 
conducted studies, we investigated the effect of 
seizure at thirteen days of pregnancy on the 
function of M1 mAchRs in the hippocampus of 
male offspring. The results of our study 
revealed that the offspring in the control group 
exposed to 0.1 and 1 nM doses of antagonist M1 
mACh R (telenzepine) showed lower fEPSP-
LTP than those that received pure aCSF. This 
result is consistent with a previous study that 
showed the role of the cholinergic system in 
CA1 LTP induction (9,10). However, this 
reduction effect of the telenzepine did not 
observe in slices taken from the offspring of the 
kindled group. The present study suggested that 
maternal kindling causes abnormal 
development of the M1 muscarinic receptor 
which leads to defects in M1 receptor function 
in adulthood. Abnormal function of the M1 
receptor resulted in lower fEPSP-LTP of the 
kindled group and no further effect on the M1 
antagonist. A previous study reported that 
maternal seizure has a severe effect on the 
neurobiological development of the offspring 
hippocampus (30), here we showed the M1 
muscarinic receptor is a susceptible candidate 
that could be affected by maternal seizure and 
the functional deficiency of the muscarinic 
system could be traced until adulthood. 
However, these preliminary results should be 
confirmed by a further study that will evaluate 
the amount of M1 receptor proteins or/and 
mRNA and M1 receptor structure of the 
offspring.   

This study did not show significant changes 
in PS-LTP magnitude, neither seizure nor 
telenzepine had a significant effect on the PS-
LTP magnitude. These results may propose a 
site-dependent effect of telenzepine and 

maternal seizure of CA1 of the hippocampus 
(31,32).  

Paired-pulse facilitation is a very short-term 
form of dependent synaptic plasticity observed 
at synapses in different phylogenetic groups 
(33). In paired-pulse facilitation, transmitter 
release evoked by a second presynaptic action 
potential is enhanced when it follows a previous 
action potential within tens or hundreds of 
milliseconds (34-36). This phenomenon is 
generally evaluated as an index of presynaptic 
alterations during more persistent and complex 
forms of synaptic plasticity. The results of our 
study showed that paired-pulse indexes (short-
term plasticity) had no significant difference 
among experimental groups. These results are 
consistent with a previous -study that observed 
no change in paired-pulse indexes between the 
epileptic group and the control group (37). In 
our study, the lack of change in the paired-pulse 
indexes in the experimental groups could 
indicate that the maternal seizures and 
telenzepine did not affect the permeability of 
presynaptic neurons and the release of 
neurotransmitters from presynaptic terminals in 
offspring. 
 

CONCLUSION 
 

Taken together, these findings suggest that 
recurrent seizures during pregnancy cause 
impaired fEPSP-LTP induction and abnormal 
development of the M1 muscarinic receptor in 
the hippocampus. While maternal seizure had 
no effect on the paired-pulse indexes (short-
term plasticity) recorded from the CA1 area of 
the male offspring.  
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