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Abstract 

 

Background and Purpose: Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer 

in which three hormone receptors are negative. This work aimed at identifying customized potential molecules 

inhibiting epidermal growth factor receptor (EGFR) by exploring variants using the pharmacogenomics 

approaches. 

Experimental approach: The pharmacogenomics approach has been followed to identify the genetic variants 

across the 1000 genomes continental population. Model proteins for the populations have been designed by 

including genetic variants in the reported positions. The 3D structures of the mutated proteins have been 

generated through homology modeling. The kinase domain present in the parent and the model protein 

molecules has been investigated. The docking study has been performed with the protein molecules against 

the kinase inhibitors evaluated by the molecular dynamic simulation studies. Molecular evolution has been 

performed to generate the potential derivatives of these kinase inhibitors suitable for the conserved region of 

the kinase domain. This study considered variants within the kinase domain as the sensitive region and 

remaining residues as the conserved region. 

Findings/Results: The results reveal that few kinase inhibitors interact with the sensitive region. Among the 

derivatives of these kinase inhibitors molecules, the potential kinase inhibitor that interacts with the different 

population models has been identified 

Conclusions and implications: This study encompasses the importance of genetic variants in drug action as 

well as in the design of customized drugs. This research gives way to designing customized potential molecules 

inhibiting EGFR by exploring variants using the pharmacogenomics approaches. 
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INTRODUCTION 
 

Breast carcinoma or breast cancer has been 

reported as the second leading cause of death, 

next to lung cancer among women (1). Among 

breast cancer subtypes, triple-negative breast 

cancer (TNBC) is one of the lethal forms of 

cancer, where the three hormone receptors, 

estrogen, progesterone, and human epidermal 

growth factor receptor 2 (HER2) are absent (2). 

Though TNBC accounts for only 10-15 % of all 

breast cancer cases, most of the patients 

affected with the disease seem to be having 

complex metastases, leading to a minimum of 

60% reduction in the 5-year survival rate of 

young women and making the disease into a 

matter of concern (3). The TNBC is due to the 

overexpression of the epidermal growth factor 

receptor (EGFR) gene, which is a kinase 

receptor, from the EGFR family (4). The 

missense substitutions; L858R (leucine of the 

858th position of the protein to arginine) and 

T849I (threonine of the 849th position of the 

protein to isoleucine) of EGFR protein were 

identified in TNBC cell lines (5).  
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The variation of a nucleotide base in a 

specific genomic position constitutes the single 

nucleotide variation (SNV) (6), which plays a 

crucial role in studying the individual-specific 

behavior of disease susceptibility and drug 

response.   

Correlating SNVs to breast cancer subtypes 

has become a complex task (7). Population 

study shows a variation in the frequency of 

occurrence of SNVs within and across 

population groups. SNVs within coding regions 

of the genome may lead to a change in amino 

acids causing functional changes in the protein. 

Non-coding variants influence gene regulation 

if present in the regulatory regions (8). Hence 

both coding and non-coding variants are 

equally crucial for the analysis. Among various 

variant annotation platforms 'Ensemble Variant 

Predictor' provide an integrated web interface 

to carry out the analysis, prioritization, and 

annotation of variants within coding and non-

coding regions (9-12). Homology modeling 

could generate a 3D structure of a variant 

protein (whose 3D structure is unavailable) 

from a known structure (13).   

Kinase inhibitors (KI) are available in the 

market, but due to the tricky nature of kinases, 

they develop resistance to inhibitors (14). The 

protein-drug interaction (PDI) network could 

be used to study the interaction between protein 

and drug molecules. The network analysis 

focuses on studies with applications in cancer 

research (15). A molecular docking study could 

be employed to evaluate the PDI network (16). 

In 2017, Zeeshan Yousuf et al. identified 

potential molecules that could inhibit multi-

targets of breast cancer through the in-silico 

approach (17). The effect of furanocoumarins 

in controlling breast cancer by targeting 

multiple targets has been studied through 

molecular docking studies (18). 

To enhance the quality of scoring functions 

of docking, advanced computational techniques 

such as molecular mechanics-Poisson 

Boltzmann surface area or molecular 

mechanics-generalized born surface area (MM-

GBSA)' can be incorporated. This helps in 

identifying the most accurate binding pose of 

the ligand within the binding site of the target 

and the corresponding binding energy (19). The 

hydrogen bond stability of the ligand-target 

complex can be further evaluated through 

molecular dynamic (MD) simulation (20). 

Evolutionary analysis of chemical structures 

would generate evolutionary derivatives of 

parent compounds which could be analyzed 

using physicochemical, absorption distribution 

metabolism, excretion, and toxicity (ADMET) 

properties (21).   

The drug’s effect on any population depends 

upon the variation of the target gene and the 

respective protein from the reference gene and 

protein kept in the repositories. Hence, the 

variants have to be incorporated into the gene 

and protein levels to identify the population-

specific gene and protein targets. The 

population-specific variant percentage may 

also be considered while designing the model 

proteins (22).   

In the present work, kinase domain-specific 

variants alone have been considered while 

making the target model protein molecules. The 

possibility of designing population-specific 

(customized) potential ligand molecules, 

inhibiting the EGFR-mediated TNBC and 

targeting the conserved region of the kinase 

domain, has been excavated in this work. 

 

MATERIALS AND METHODS 

 

The EGFR gene sequence has been collected 

from NCBI (23). Gene ontology has been 

studied using Uniprot and Gene cards (24,25). 

The genetic variations of EGFR have been 

collected from the database of single nucleotide 

polymorphisms (26). The variants were further 

analyzed using an ensemble variant effect 

predictor (VEP) (27). The functional domains 

of the protein have been identified using 

Expasy Prosite (28). The protein data bank 

(PDB) structures within the domain region have 

been identified from Uniprot (24). The 

identified variants have been included in the 

kinase domain of the target protein molecule.  

 

Molecular modeling and evaluation of models 

The 3D structures of the protein target 

molecule have been designed through 

homology modeling with the help of the online 

tool, SWISS-MODEL (29). Homology 

modeling includes the following steps: (i) 

identification of structural template(s): the 
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template structure has been identified based on 

the PDB structures present within the domain 

region; (ii) alignment of the target sequence and 

template structure(s): this has been done by 

doing sequence similarity between the template 

and the target sequence; (iii) model-building: 

the template was then subjected to model 

building where a 3D structure for target protein 

sequence have been generated based on the 

template protein structure; (iv) model quality 

evaluation. The quality estimation of modeled 

structure has been carried out using the 

Ramachandran plot and the ERRAT plot using 

the SAVES server (30).  

 

PDI network 

The list of approved kinase inhibitors has 

been collected from the literature and the 

National Institute of Health (NIH) database 

(31). The drugs included in the list have been 

compared with National Comprehensive 

Cancer Network (NCCN) guidelines (32). 

These drugs were further screened for the 

EGFR gene by biomolecular networking 

analysis using the PDI network with the help of 

Cytoscape 3.9.0 (). The network obtained is 

characterized with the help of degree, closeness 

centrality, and betweenness centrality using 

Cytoscape (33). The control drugs selected 

from biomolecular networking were further 

subjected to an interaction study with the target 

protein using Glide (34).  

 

Molecular docking studies 

The 3D structure of molecules that passed 

the screening has been retrieved from PubChem 

(35). Molecular docking studies were carried 

out using the Glide module of Schrodinger in 

the windows operating system (34). 

 

Ligand preparation 

The ligand minimization was carried out 

using the LigPrep module with the optimized 

potentials for liquid simulations (OPLS3e)’ 

force field by adding the hydrogen atoms to the 

molecules and assigning bond orders. 

  

Protein preparation 

The protein preparation was carried out 

using the protein preparation wizard module. 

During the pre-processing step of protein 

preparation, the bond orders were assigned to 

the protein using the CCD database, adding 

hydrogen atoms, creating zero-order bonds to 

metal, creating disulfide bonds, and generating 

Het states using EPIK at pH 7.0. The pre-

processed structure is refined through 

optimization by assigning hydrogen bonds 

using the option PROPKA at pH 7.0. The water 

molecules were removed where the Hets are 

beyond 3.0 A. The protein structure was then 

subjected to minimization using an OPLS4 

forcefield. 

  

Receptor grid generation 

The binding site was defined based on the 

amino acid residues from the domain region. 

The grid was generated around the defined site.  

 

Ligand docking 

A flexible ligand docking was carried out 

using standard precision. Here, sample nitrogen 

inversions, sample ring conformations, and bias 

sampling of torsions for all predefined 

functional groups were followed, along with the 

addition of Epik state penalties to the docking 

score. Ten poses were generated for each ligand 

molecule. Post-docking minimization was 

performed for all the poses. 

  

MD simulation 

The MD simulation was carried out using the 

NAMD tool. A system was built using the 

ligand-target complex, where an orthorhombic 

simulation box was created. The complex was 

solvated within the simulation box using 

explicit water modeling with the CHARMM65 

force field. The solvated model was then 

exposed to 0.15 M salt concentration. NVT 

(number, volume, and temperature) and NPT 

(number, pressure, and temperature) ensembles 

were used by setting the temperature as 310 K, 

pressure as 1 Pa, number of runs as 20,000, and 

simulation time as 100 ns. The results were 

analyzed using root mean square deviation 

(RMSD) and root mean square fluctuation 

(RMSF) plots (36). 

 

MM-GBSA analysis 

The ligand's binding affinity within the 

target's active site was further evaluated 

through the MM-GBSA method using the 
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Prime module of Schrodinger. The OPLS4 

force field has been used with an implicit 

solvent model for intramolecular hydrogen 

bonding, hydrophobic, and pi-pi interactions. 

During the process, VSGB 2.0 solvation model 

was implemented (37,38). 

 

RESULTS 

 

The EGFR gene has been considered the 

target gene for TNBC. The gene was found to 

be involved in mechanisms including epidermal 

growth factor-activated receptor activity, nitric-

oxide synthase regulator activity, nitric-oxide 

synthase activity, mutagen-activated protein 

kinase activity, protein serine/threonine kinase 

activity, ATPase, and protein tyrosine kinase 

activity. 

 

Variant annotation 

Among 43223 protein-coding SNVs 

identified, only 2027 were somatic. While 

analyzing the variants, it has been found that the 

SNVs rs55959834, rs41420046, rs2229066, 

rs1140475, rs41396448, rs2293347, and 

rs55737335 are synonymous; rs138240620, 

rs371228501, rs538497054, rs575565383, 

rs201830126, rs144496976, rs17290699, and 

rs542967903 are missense variants, and 

rs55959834 is within the splice region and is 

synonymous (Table S1). 

The population analysis of variants gave the 

1000 genome continental allele frequencies for 

the African (AFR), American (AMR), East 

Asian (EAS), European (EUR), and South 

Asian (SAS) populations with the help of the 

tool, VEP. Altogether, 16 variants are found to 

be in the kinase domain region. Ten variants 

among them are identified in the AFR 

population, six are found in the AMR, three are 

found in the EAS, six in the EUR, and five in 

the SAS. The frequency of occurrence of these 

variants across the population is included in 

Table 1.  

 

Identification and design of targets 

The kinase domain of EGFR protein is in the 

712th to 979th positions of P00533. Among the 

3D protein molecules included in the 

repository, 1XKK has been identified as the 

target EGFR protein keeping the kinase domain 

with a resolution of 2.4 Å. The population-

specific protein models have been designed by 

including the variants within the domain region. 

The variants keeping part of the domain are 

considered the sensitive (highly mutable) 

region and the remaining part is considered a 

relatively conserved region (Fig. 1). Five 

mutant protein models have been generated 

corresponding to AMR, EUR, AFR, EAS, and 

SAS populations. The 3D target protein models 

have been designed by homology modeling. 

The quality of the models has been assessed by 

the RMSD, the qualitative model energy 

analysis (QMEAN), the ERRAT plot and the 

Ramachandran plot (Table 2). 

 
Table 1. The 1000 genome continental allele frequency score for epidermal growth factor receptor. 

Single nucleotide variation ID   African    American East Asian European South Asian 

rs55959834   0.0000   0.0000   0.005   0.0000   0.0010   

rs138240620   0.0000   0.0014   0.0000   0.0000   0.0000   

rs41420046   0.0136   0.0000   0.0000   0.0000   0.0000   

rs371228501   0.0008   0.0000   0.0000   0.0000   0.0000   

rs2229066   0.0008   0.0058   0.0000   0.0169   0.0051   

rs530256683   0.0000   0.0029   0.0000   0.0000   0.0000   

rs1140475   0.9281   0.8963   0.9196   0.8907   0.9397   

rs538497054   0.0000   0.0000   0.0000   0.0000   0.0031   

rs41396448   0.0023   0.0000   0.0000   0.0000   0.0000   

rs575565383   0.0015   0.0000   0.0000   0.0000   0.0000   

rs201830126   0.0000   0.0000   0.0000   0.0010   0.0000   

rs144496976   0.0008   0.0000   0.0000   0.0020   0.0000   

rs17290699   0.0340   0.0000   0.0000   0.0000   0.0000   

rs542967903   0.0008   0.0000   0.0000   0.0000   0.0000   

rs2293347   0.0129   0.1542   0.2470   0.1113   0.2301   

rs55737335   0.0000   0.0058   0.0000   0.0030   0.0000   
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Fig. 1. 1XKK with variants incorporated in its domain region. 

 

 
Table 2. Evaluation of model proteins. 

 Model quality check  American African East Asian South Asian South Asian 

Qualitative model energy analysis  -3.43  -1.49  -0.84  -2.22  -2.10  

Ramachandran plot       

   Most favored regions  83.10%  90.00%  90.00%  88.20%  85.30%  

   Additional allowed regions  13.10%  9.50%  9.50%  10.70%  12.20%  

   Generously allowed regions  3.30%  0.50%  0.50%  1.10%  2.50%  

Disallowed regions  0.50%  0.00%  0.00%  0.00%  0.00%  

ERRAT       

   Overall quality factor  91.2568  94.8718  94.8718  94.9721  92.8426  

Root mean square deviation 1.4288  2.5680  1.3250  1.9740  1.2972  

 

Identification of control drugs 

The popular KI derived from 4-

aminoquinazoline core pharmacophores such 

as afatinib, gefitinib, erlotinib, lapatinib, 

dacomitinib, sapatinib, sunitinib, icotinib, 

poziotinib, etc. has been considered for the 

analysis (Table S2). The biomolecular network 

with the derivatives connected to EGFR, 

covering the PDI is included in Fig. 2. All the 

kinase inhibitors interacting with EGFR have 

been selected and their closeness centrality                 

and betweenness centrality were calculated 

(Table S3).  

Molecular interaction study 

Lapatinib, sapitinib, sunitinib, icotinib, and 

poziotinib are found to be interacting with the 

kinase domain with appreciably high affinity 

(Table 3). From docking results, lapatinib was 

found to be highly interacting with the template 

protein and AMR model; afatinib was found to 

be suitable for AFR and EAS models; neratinib 

showed a good binding affinity with the SAS 

model, and gefitinib showed a good binding 

affinity with EUR model. The results obtained 

by docking have been further evaluated by 

MMGBSA and MD simulation studies.   
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Fig. 2. The protein-drug interaction network of 4-aminoquinazoline derivatives and EGFR. EGFR, Epidermal growth 

factor receptor. 

 

 
Table 3. The binding affinity (kcal/mol) of kinase inhibitors with the target. 

 Drug 1XKK American African East Asian South Asian European 

Afatinib -6.995 -6.3127 -6.3481 -7.7268 -5.6299 -5.0180 

Dacomitinib -5.933 -5.1468 -5.5975 -5.2547 -5.5596 -5.9527 

Erlotinib -7.454 -7.8763 -5.3144 -6.2418 -5.5981 -4.9913 

Gefitinib -7.447 -7.1597 -6.1544 -5.9375 -5.1464 -5.9705 

Lapatinib -8.683 -7.9189 -5.0576 -5.6943 -4.9109 -5.9557 

Neratinib -7.992 -5.9925 -5.0136 -5.1994 -6.8993 -5.8290 

Poziotinib -8.389 -4.8763 -5.5216 -4.9908 -6.3311 -5.6902 

Sapitinib -6.351 -5.6874 -5.2546 -4.8792 -4.8268 -5.7038 

Sunitinib -7.871 -5.3445 -5.5387 -4.8088 -5.9046 -5.0794 

 

Evaluation of ligand-target complex 

MD simulation 

MD simulation showed that lapatinib and 

gefitinib showed good interaction with the 

kinase domain of 1XKK and showed good 

hydrogen bond stability during simulation. 

Lapatinib showed hydrogen bond stability with 

the AMR model, sunitinib showed H-bond 

stability with AFR and SAS models, neratinib 

for EAS, and sapitinib for the EUR model. For 

the ligand-target complexes (Fig. 3) when 

subjected to MD simulation, few of them lost 

their hydrogen bond, and few of them retained 

their bond. 

The RMSF plots of the target models are 

included in Fig. S1. Fluctuations were found in 

the RMSF plots of model proteins. The                

residues within the position 726, 750, 798, 870, 

and 970 of 1XKK template protein showed                  

the highest fluctuations; in the AMR model, 

residues within 728, 754, 806, 810, 915,                         

and 970 positions showed high fluctuations; the 

residues within the region 806, 883, and, 962 of 

AFR model showed the highest fluctuations. 

The EAS model's residues within                         

positions 885, 915, and 979 fluctuated                          

the most. Similarly, for the EUR model, 

residues within positions 884, 910, 936,                   

and 962 showed fluctuations. SAS model 

residues within the region 806, 860, and                         

910 showed the highest fluctuations among the 

residues.   
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Fig. 3. Ligand interaction diagram of complexes. 

 

Table 4. The MMGBSA (ΔG bind) of kinase inhibitors with model proteins and its difference from template protein 

1XKK (ΔΔG) in kcal/mol 

Drug 
1XKK American-model African-model 

East Asian-

model 

South Asian-

model 
European-model 

ΔGbind ΔGbind ΔΔG ΔGbind ΔΔG ΔGbind ΔΔG ΔGbind ΔΔG ΔGbind ΔΔG 

Afatinib -51.18 -12.56 38.62 -46.65 4.53 -29.35 21.83 -24.80 26.38 -22.35 28.88 

Dacomitinib -50.70 -20.46 30.24 -11.50 39.20 -19.60 31.10 -37.24 13.46 -20.10 30.60 

Erlotinib -59.28 -32.56 26.72 -37.53 21.75  -10.25 49.03 -20.12 39.16 -28.95 30.33 

Gefitinib -50.71  -49.96 0.75 -29.14 21.57  -21.10 29.61 -20.28 30.48 -15.21 35.50 

Lapatinib  -60.77  -53.48 7.29   -38.68 22.09 -30.25 30.52 -19.25 41.52 -20.77 40.00 

Neratinib -53.52 -32.34 21.28  -35.36 18.16 -40.00 13.52 -29.41 24.11 -32.54 20.98 

Poziotinib -60.27 -20.16 40.11 -20.13 40.14 -18.29 41.98 -21.53 38.74 -28.24 32.08 

Sapitinib  -45.37 -40.69 4.32  -19.49  15.88 -11.19 24.18 -20.56 14.81 -45.32 -9.95 

Sunitinib -48.35 -21.00 27.35 -51.23 -2.88 -21.68 26.67 -30.54 17.81 -28.39 19.96 

 

The variant amino acids within the region 

859 and 904 of the AMR model showed RMSF 

values of 2.71 Å and 1.882 Å; the residues 

within 786, 831, 903, 904, 910, and 917 of 

AFR-model showed RMSF values of 0.708 Å, 

0.194 Å, 0.846 Å, 1.182 Å, 1.287 Å, and 0.801 

Å. The residues within position 727 of the EAS 

model had an RMSF value of 0.516 Å; the 

residues within the 727 and 904 positions had 

RMSF values of 0.484 Å and 3.198 Å.                        

The residues within the 904th and                                  

910th positions of the EUR model had RMSF 

values of 4.655 Å and 1.908 Å. The 

pharmacophoric properties used for the primary 

screening of ligands, such as the number                             

of H-bonding donor sites, number of H-bonding 

acceptor sites, logP, polar surface area, etc. of 
the top interacting molecules are included                       

in Table S4. The simulation diagram                                 

of the drugs that showed good interaction results 

with the population model is shown in Fig. 4. 

MMGBSA 

The MMGBSA method computes the 

relative binding-free energy of each ligand 

molecule with all the population models and the 

template protein (Table 4). The ΔG value of the 

drug is a measure of IC50 using the following 

equation: 

∆G = -RT ln(pIC50) 

where R is the universal gas                                    

constant, T, temperature, and pIC50 equals -

log10 (IC50). 

The variation of ΔGbind is found to be in 

accordance with the experimental PIC50                 

(Fig. 5). Moreover, the calculated entropy 

values support dimensionality and probable 

steric hindrance provided by the inhibitors 

(Table 5). The difference in binding affinity of 

kinase inhibitors with the template and the 

protein models (ΔΔG) was computed for each 

population (Table 5).   
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Fig. 4. RMSD plot of ligand-target complexes during molecular dynamic simulation. RMSD, Root mean square deviation. 

 

 
 

Table 5. The PIC50, the calculated entropy of ligand molecules, expected bind free energy, and binding free energy 

obtained from docking ΔGbind(docking) in kcal/mol. 

Kinase inhibitors PIC50  ΔGbind (expected)  ΔGbind (docking)  TΔSCalculated  

Lapatinib 9.70 -13.850242 -8.683 -5.167242 

Poziotinib 8.66 -12.3652676 -8.389 -3.9762676 

Erlotinib 9.00 -12.85074 -7.454 -5.39674 

Neratinib 8.66 -12.3652676 -7.992 -4.3732676 

Afatinib 7.85 -11.208701 -6.994 -4.214701 

Dacomitinib 7.36 -10.5090496 -5.933 -4.5760496 

Gefitinib 7.12 -10.1663632 -7.447 -2.7193632 

Sunitinib 6.76 -9.6523336 -7.871 -1.7813336 

Sapatinib 7.92 -11.3086512 -6.351 -4.9576512 

 
The non-strain MMGBSA_ΔGbind has been 

studied for the complexes. It is the 
binding/interaction energy without considering 
the receptor and ligand conformational changes 
required to form the complex. While studying 
the MMGBSA_ΔGbind (NS), dacomitinib 

showed the highest energy for the template 
model, icotinib showed the highest energy for 
the AMR model, sunitinib showed high energy 
for the EAS model, poziotinib for SAS model, 
and sunitinib for EUR model, respectively 
(Table S5).
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Fig. 5. pIC50 v/s IC50 plot of kinase inhibitors. 

 

The clinical trial reports were analyzed for 

lapatinib, gefitinib, sunitinib, sapitinib, and 

neratinib. It has been identified that the drug 

action of lapatinib was high for AMR and 

comparatively low for SAS and EAS. The 

adverse events and death due to disease 

progression were high for SAS and EAS and 

minimum for AMR when lapatinib was 

administered. When gefitinib was administered 

to the patients, 50% died due to disease 

progression among EAS and 19% suffered 

severe adverse events. The drug showed 15% 

adverse side effects among AMR. The disease 

progression, as well as the death, was not 

reported for AMR. When sunitinib was 

administered to AMR and EUR populations, 

the patients completed the course without any 

serious adverse events or death. When it was 

given to the EAS, there were 19.23% death, 

11.6% disease progression, and 40% serious 

adverse events. When sapitinib was given to the 

AMR and EUR populations, 0.67% of patients 

among AMR showed disease progression and 

25% of them showed serious adverse events. 

Whereas there was no disease progression 

among EUR patients and there were 50%                    

side effects. 

DISCUSSION 

 

TNBC, also known as basal-like breast 

cancer, has been characterized by a deficiency 

in targeted therapies, aggressive history, and 

discrete molecular profile (39). The molecular 

profile states that a high expression of CK5, 

CK14, caveolin-1, caix, p63, and EGFR/HER1 

influences the mammary gland (40,41). The 

pathway analysis of breast cancer and its 

subtypes revealed that TP53 mutations, PI3K, 

and MEK pathway activation, mutagen-

activated protein kinase pathway, the Akt 

pathway, and the poly ADP-ribose polymerase 

pathway play a key role in TNBC (42). It was 

found that the overexpression of genes EGFR, 

KIT, IGF1R, Notch1, Notch4, and LRP6 are the 

initial phase in the TNBC pathway.  

If the phase 1 genes are inhibited, then the 

activation of other pathways could be 

downregulated, thereby preventing the 

progression, proliferation, and translocation of 

TNBC cells. The genome-wide association 

study analyzes the genetic variants in different 

individuals, thus correlating variants and 

phenotypes (43). Researchers have 

demonstrated that about 85% of variants occur 
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within populations and 15% occur across the 

population (30). This might be the reason 

behind the variation in drug action and drug 

response across and within the population. 

Various in-silico approaches are available to 

identify existing variants' phenotypic and 

disease correlation.  

The variant annotation showed that variants 

rs2227983 and rs371228501 were reported to 

involve malignant breast neoplasm and breast 

carcinoma, whereas rs2293347, rs35918369, 

rs2072454, and rs2227983 were involved in 

lung carcinoma. The variants rs55959834, 

rs41420046, rs2229066, rs1140475, 

rs41396448, rs2293347, and rs55737335 are 

synonymous; rs138240620, rs371228501, 

rs538497054, rs575565383, rs201830126, 

rs144496976, rs17290699, and rs542967903 

are missense variants and rs55959834 is both 

splice region and synonymous variant. Among 

43223 variants, 98 were completely annotated 

for identifying 1000 genome continental allele 

frequencies. It has been identified that 45 

variants belonged to the AFR, 32 variants 

belonged to the AMR, 47 variants belonged to 

EAS, 46 variants belonged to the EUR, and 38 

variants belonged to SAS. Among these 172 

variants, 7 variants including rs2072454, 

rs2227983, rs17290169, rs2227984, 

rs10258429, rs1140475, and rs2293347 were 

found commonly among all the population 

class. The positions of coding variants have 

been retrieved.  

The P00533 was identified as the EGFR 

protein. The protein kinase domain has been 

identified within the 719th-979th position of 

P00533. Amino acids within the 718-726 

region are nucleotide phosphate binding in 

nature within the kinase domain. K745 is 

identified as the binding site, and D837 is found 

as the active site involved in enzyme catalysis. 

The protein kinase ATP binding domain lies 

within residues from the 718th-745th position, 

and the protein tyrosine kinase domain falls 

within the region 833-845. 

1XKK has been identified as the template 

protein of EGFR as it possesses all the amino 

acids present in the kinase domain. The 11 most 

frequent variations within kinase domain are 

780 G/S, 785 L/P, 797 S/C, 859 P/S, 868 D/H, 

874 P/A, 885 R/Q, 894 P/A, 940 A/D, 945 Y/C, 

and 950 D/N. The mutant protein sequence was 

generated by incorporating these variants into 

the protein sequence.  

The predicted models generated by 

homology modeling were validated using 

various validation techniques. The best model 

for each population has been selected based on 

the RMS deviation, Ramachandran plot, 

ERRAT plot, and QMEAN values. The 

biomolecular interaction network helps us to 

predict the interaction possibility of the selected 

molecules. As biofunctionality is closely 

related to molecular interactions, this sort of 

networking and characterization are found to be 

useful in the functional enrichment of the 

molecules. Usually, molecules with a top 

degree, closeness centrality, and betweenness 

centrality will be selected as functionally 

relevant. Here, from Fig. 1 and Table S3, 

afatinib, canertinib, dacomitinib, erlotinib, 

gefitinib, lapatinib, icotinib, neratinib, 

poziotinib, sapitinib, sunitinib, and vandetanib 

are found to be interacting with EGFR and are 

with sufficiently high closeness centrality and 

betweenness centrality. These molecules are 

found to be functionally relevant and 

interactionally predominant kinase inhibitors of 

EGFR. These inhibitors were subjected to 

molecular docking with the parent target 

template, 1XKK and the models designed for 

the populations within the kinase domain 

binding site. 

During the evaluation of PDI, the O4 atom 

of sapitinib formed hydrogen bond interactions 

with the N atom of VAL884 and CD PRO885 

within 3.31 Å and 3.33 Å, respectively. 

Sunitinib developed a pi-H bond between its 6-

ring and CD1 atom of LEU785 within 3.72 Å. 

O5 and O6 atoms of lapatinib formed hydrogen 

bonding interactions between CD and N atoms 

of PRO 761 within 3.93 Å and 2.98 Å, 

respectively. Br1 atom of vandetanib formed a 

hydrogen bond with the O atom of VAL842 

within 3.62 Å. O5 and O6 atoms of lapatinib 

formed hydrogen bonding interactions between 

CD and N atoms of PRO761 within 3.93 Å and 

2.98 Å, respectively. It also developed a pi-H 

bond between its 5-ring and CB atom of 

ALA763 within 3.97 Å.  

The O3 atom of icotinib formed a hydrogen 

bond with NH2 of ARG844 within 2.92 Å. O5 
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atom of poziotinib shared hydrogen bonding 

interactions with NE and NH1 of ARG897 

within 3.26 Å and 3.52 Å. Its N9 atom formed 

a hydrogen bond with the O atom of LEU866 

3.28 Å. These drugs interact with the sensitive 

region of the kinase domain.  

The O3 atom of afatinib shared a hydrogen 

bond interaction with the NE atom of the 

ARG844 target within 3.25 Å. The N6 and N10 

atoms of canertinib formed a hydrogen bond 

with NH1 atom of ARG844 within 3.05 Å and 

CA atom of ALA763 within 3.8 Å. It also 

formed a pi-H bond between the 6-ring of the 

drug and the CB atom of ALA763 within 3.93 

Å. Dacomitinib formed a hydrogen bond 

between N7 of the drug and OE1 of GLU770 

within 3.20 Å.  

O3 of erlotinib developed an H-bond with 

NH1 atom of ARG844 within 2.97 Å. N7 and 

C19 atoms of gefitinib showed hydrogen bond 

interaction with OD1 atom of ASP863 within 

3.19 Å and 3.37 Å. It also formed a hydrogen 

bond between the N8 atom of the drug and the 

CB atom of ALA751 within 3.38 Å. CL1 and 

N5 of neratinib shared hydrogen bonds with O 

atoms of LYS762 within 3.19 Å and LEU866 

within 2.91 Å. The complexes were formed 

within the conserved region of the kinase 

domain.  

The ligand-target complexes were then 

subjected to MD simulation to check the KI-

target complex stability. It was observed that 

the drug, neratinib, tends to lose its interaction 

after 0.5 ns. At the same time, the O3 atom of 

lapatinib showed hydrogen bonding 

interactions with NH1 and NH2 atoms of 

ARG844 within 3.14 Å and 3.20 Å, 

respectively. Sapitinib developed an ionic bond 

with ASP840 and a hydrogen bond with 

ARG836 of the sensitive region within the 

kinase domain of 1XKK. Sunitinib had both 

ionic bonds with ASP863 and THY725 residue 

of the conserved region and LYS753 of the 

sensitive region within the domain. Vandetinib 

interacted with the residues VAL842 and 

VAL859 of the sensitive region. 

The evaluation of ligand affinity within the 

active site of the target could be studied through 

MMGBSA. MMGBSA calculates the free 

energy state by considering three energy terms 

such as Ebond (bond, angle, and dihedral), Eel 

(electrostatic), and EvdW (van der Waals) 

interactions, Gpol (polar contribution), Gnp 

(non-polar contribution), and the last term is T 

(absolute temperature) multiplied by S 

(entropy). Here the non-polar solvation energy 

is in linear relation to the solvent-accessible 

surface area. Coulomb’s law was used to 

calculate the electrostatic term. In order to 

calculate the entropy term, all the water 

molecules and residues are > 8 Å from the 

ligand. The ligand-target complexes such as 

lapatinib-1XKK, gefitinib-AMR model, 

sunitinib-AFR model, sunitinib-SAS model, 

and sapitinib-EUR model were found with good 

MMGBSA_ΔGbind energies. Lapatinib and 

gefitinib showed interaction with the AMR 

variant; sunitinib interacted with the AFR 

variant, dacomitinib interacts with the SAS 

variant, neratinib interacted with the EAS 

variant, sapitinib interacted with the EUR 

variant. 

 

CONCLUSION 

 

The study elucidates the involvement of 

single nucleotide variants within the domain of  

EGFR in drug action. An increased expression 

of EGFR was found among 'Triple Negative 

Breast Cancer cell lines. Thus, EGFR mutant 

protein has been considered as the target.                     

The EGFR variant annotation has been carried 

out. Based on the presence of SNVs, the kinase 

domain is classified as the sensitive region                  

(the region with variants) and the conserved 

region (the region without variants).                               

The remaining region of the Uniprot ID P00533 

is identified as the offsite region. PDI explains 

the approved kinase inhibitors that are reported 

to interact with EGFR protein. Few drugs were 

identified to interact with the sensitive region 

and are considered sensitive drugs. This may be 

the reason for the variation in drug action                        

and response. This has been illustrated by 

designing mutant model proteins of EGFR for 

populations AMR, EUR, EAS, AFR, and                    

SAS. The variation of drug interaction and its 

thermodynamic as well as kinetic stability                    

were studied. The results were cross-checked 

with the existing clinical trial reports. The 

observed results complemented the clinical trial 

reports. 
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SUPPLEMENTARY MATERIALS 

  

  

  
Fig. S1. The RMSF plots of ligand-target complexes after molecular dynamic simulation. RMSF, Root mean square 
fluctuation. 
 

 

Table S1. The variant annotation. 

Single nucleotide 

variant 
Location Allele  Protein position 

Amino  

acids 
Codons   

rs55959834   7:55174034-55174034  A   725 T acG/acA   
rs138240620   7:55174039-55174039 G   727 Y/C   tAt/tGt   

rs41420046   7:55191736-55191736 A   784 E   gaG/gaA   

rs371228501   7:55191740-55191740 T   786 R/C   Cgt/Tgt   

rs2229066   7:55191757-55191757 T   791 R   cgC/cgT   

rs530256683   7:55192840-55192840 T   855 Y   taC/taT   

rs1140475   7:55198724-55198724 C   858 T   acT/acC   

rs538497054   7:55198725-55198725 A   859 V/I   Gtt/Att   

rs41396448 7:55198763-55198763 T 871 D   gaC/gaT   

rs575565383   7:55198815-55198815 T 889 P/S   Cct/Tct   

rs201830126 7:55200330-55200330 A 910 A/T   Gca/Aca   

rs144496976 7:55200352-55200352 A 917 R/H   cGt/cAt   

rs17290699 7:55201204-55201204   C 943 H/P   cAt/cCt   

rs542967903  7:55198857-55198857 A 948 V/I   Gtc/Atc   

rs2293347   7:55201223-55201223 T 949 D   gaC/gaT   

rs55737335 7:55201256-55201256 G 960 E   gaA/gaG   
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Table S2. List of kinase inhibitors. 

Afatinib Neratinib Sorafenib Regorafenib Ripasudil Ribocicilib 

Aloitinib Poziotinib Nilotinib Dabrafenib Alectinib Abemaciclib 

Dacomitinib Sapitinib Crizotinib Trametinib Cobimetinib Baricitinib 

Canertinib Soratinib Axitinib Ibrutinib Lenvatinib  

Erlotinib Sunitinib Tofacitinib Nintedanib Palbociclib Simotinib 

Lapatinib Vandetinib Bosutinib Idelalisib Radotinib Binimetinib 

Gefitinib Tucatinib Cabozantinib Ceritinib Osimertinib Lorlatinib 

Icotinib Valertinib Ponatinib Apatinib /Rivoceranib Olmutinib Flumatinib 

Peficitinb Selumetinib Tirabrutinib Filgotinib Orelabrutinib Trilaciclib 

Avapritinib Ripretinib Almonertinib Tirbanibulin Tepotinib Zanubrutinib 

 
Table S3. The network analysis. 

Node Betweenness centrality Closeness centrality 

Afatinib 8.43 9.50 

Erlotinib 2.10 9.00 

Gefitinib 2.10 9.00 

Dacomitinib 5.13 9.00 

Neratinib 3.33 8.50 

Lapatinib 0.80 8.50 

Icotinib 0.33 7.50 

Sunitinib 0.33 7.50 

Poziotinib 0.33 6.33 

Sapitinib 0.33 5.33 

 

 
Table S4. Pharmacophoric properties of kinase inhibitors. 

Poroperties Afatinib Dacomitinib Erlotinib Gefatinib Lapatinib Neratinib Poziotinib Sapitinib Sunitinib 

Molecular weight 485.946 469.947 393.442 446.909 581.066 557.052 491.349 473.935 398.48 

cLogP 3.6354 4.7187 3.0713 3.9851 4.7281 4.3389 5.2946 3.4467 1.836 

cLogS -5.476 -6.017 -3.527 -5.062 -8.061 -6.074 -6.716 -5.256 -3.471 

H-Acceptors 8 7 7 7 8 9 7 8 6 

H-Donors 2 2 1 1 2 2 1 2 3 

Total surface area 362.94 355.7 319.97 333.75 424.92 437.56 352.68 350.2 312.95 

Drug likeness -0.79682 -0.60745 -5.9718 0.47937 -4.2297 -4.0813 -4.6966 4.6824 8.335 

LE from molecule name 0.08037

8 
0.080603 0.17751 0.17294 0.12621 0.06872 0.066509 0.080639 0.10754 

LLE from molecule name -1.6433 -2.7798 0.68105 -0.07723 -1.0481 -2.3352 -3.6948 -1.507 0.43735 

LELP from molecule 

name 
45.229 58.542 17.302 23.043 37.461 63.139 79.607 42.742 17.072 

Mutagenic None none none none none high high none none 

Tumorigenic None none none none none none low none none 

Reproductive effective None none none none none none low none none 

Irritant None none none none none none low none high 

Nasty functions             

polyhalo 

aromatic 

ring 

    

Shape index 0.5 0.57576 0.55172 0.58065 0.6 0.55 0.54545 0.54545 0.55172 

Non-H atoms 34 33 29 31 40 40 33 33 29 

Non-C/H atoms 10 9 7 9 11 10 10 10 7 

Metal-atoms 0 0 0 0 0 0 0 0 0 

Electronegative atoms 10 9 7 9 11 10 10 10 7 

Stereo center 1 0 0 0 0 0 0 0 0 

Rotatable bonds 8 7 10 8 11 11 6 7 7 

LE, Ligand efficiency, LLE, ligand-lipophilicity efficiency; LELP, lipophilic efficiency. 

 

 

 

 

 



Identification of customized drugs for EGFR-mediated TNBC 

137 

 

Table S5. MMGBSA_ΔGbind (NS) of kinase inhibitors and target protein molecules in kcal/mol. 

Kinase inhibitor  1xkk 
American 

model   

African 

model  

East Asian 

model  

South Asian 

model 

European 

model 

Afatinib   -62.00 -31.12  -57.3  -54.6   -52.21 -37.25 

Dacomitinib -57.00 -29.26  -24.25  -38.68   -48.24 -35.12 

Erlotinib   -65.89 -48.57  -54.45  -23.8   -38.93 -39.50 

Gefitinib   -54.87 -57.86  -48.57  -30.56   -27.55 -28.15 

Lapatinib   -68.1 -65.24  56.14  -42.96   -26.18 -27.85 

Neratinib   -62.15 -58.32  -44.98  -58.01   -34.15 -39.21 

Poziotinib   -70.18 -41.85  -60.15  -54.65   -31.63 -35.14 

Sapitinib   -48.98 -50.15  -30.78  -27.86   -32.90 -53.38 

Sunitinib   -56.45  -33.45 -61.84  -33.54  -37.84  -37.64 

 
 
 
 
 

 


