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Abstract 

 

Bayesian estimation of pharmacokinetic parameters (PKP), as discussed in this review, provides a powerful 

approach towards the individualization of dosing regimens. The method was first described by Lewis Sheiner 

and colleagues and it is well suited in clinical environs where few blood fluid measures of drugs are available 

in the clinic. This makes it a valuable tool in the effective implementation of therapeutic drug monitoring. The 

principle behind the method is Bayes theorem, which incorporates elements of variability in a priori-known 

population estimates and variability in the pharmacokinetic parameters, and known errors intrinsic to the assay 

method used to estimate the blood fluid drug concentrations. This manuscript reviews the Bayesian method. 

The literature was scanned using Pubmed to provide background into the Bayesian method. An Add-in for 

Excel program was used to show the ability of the method to estimate PKP using sparse blood fluid 

concentration vs time data. Using a computer program, the method was able to find reasonable estimates of 

individual pharmacokinetic parameters, assessed by comparing the estimated data to the true PKP. Education 

of students in clinical pharmacokinetics is incomplete without some mention and instruction of the Bayesian 

forecasting method. For a complete understanding, a computer program is needed to demonstrate its utility.  

 

Keywords: Clinical pharmacology; Dosage regimen design; Pharmacy education; Therapeutic drug 

monitoring. 

 

1. INTRODUCTION  

 

The initial dosing regimens of most drugs 

are based on empirical dosing regimens that 

were established, using pharmacokinetic,        

safety and efficacy data, during phase 3 clinical 

trials. Owing to the existence of a narrow 

therapeutic window, for some drugs, individual 

estimates of pharmacokinetic parameters (PKP) 

through therapeutic drug monitoring practices 

are well suited for tailoring dosage needs.   

Many traditional methods of estimating                   

PKP are based solely on the plasma 

concentrations obtained from individual 

patients and applying them directly into 

pharmacokinetic equations. The timing of 

collection and the number of available 

concentrations are an important consideration; 

generally, the more concentrations one has 

available, the better refined will be the 

estimates of integral PKP such as clearance 

(CL) and volume of distribution (Vd), and 

hence optimization of dosage based on those 

values.  

For most phase 1 and phase 2 drug 

development studies, or in post-marketing 

pharmacokinetic studies, numerous blood                 

fluid concentrations are taken from the                       

same individual (serial sampling) to                

determine factors such as the area under the 

concentration (AUC) vs time curve with 

substantial accuracy in estimation of each 

subjects PKP.  
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In phase 3 studies, population 

pharmacokinetic methods using nonlinear 

mixed-effects modelling of sparse data sets 

from many patients is used to determine 

measures of central tendency, variability in 

PKP, and to identify the important clinical 

covariates. Whichever of these approaches is 

adopted, some knowledge of the mean and 

standard deviation is known by the time the 

drug is given to a patient after it is marketed. 

In a discreet patient in a health care setting, 

however, often clinicians are restricted to only 

a very few measured plasma concentrations 

after a single dose. If no blood samples are 

available, all that can be used to estimate a dose 

based on PKP is the estimates from population 

means, which in many cases will deviate from 

individual patient characteristics. Where blood 

samples are available, such as for drugs 

possessing a narrow therapeutic margin (e.g. 

aminoglycoside antibiotics, antiepileptic drugs, 

immunosuppressive agents) usually very few, 

maybe even only a single, measure may be 

available. This creates a challenge in the 

obtainment of accurate patient-specific 

estimates of PKP, which are needed for 

accurate individualization of the dosage 

regimen for that patient. 

The use of Bayesian pharmacokinetic 

forecasting and its utility in the 

individualization of dosage is well documented 

(1-6) and provides a cogent approach to dealing 

with sparse sample availability. Ideally, the 

Bayesian method should be  incorporated in the 

education of students of pharmacokinetics (7), 

including that of students in pharmacy and 

clinical pharmacology. Although the theoretical 

concepts are readily incorporated into 

educational formats, Bayesian estimation relies 

upon iterative computer procedures to solve for 

best-estimates of PKP. It is difficult to “bring to 

life” or fully inform students about the 

approach in the absence of an appropriate 

computer programfor use in the classroom, 

particularly at the undergraduate level (such as 

for pharmacy students). Ease of use is an 

important feature for such a program.  

The teaching of Bayesian estimation 

approach has been nicely described by Mehvar 

(8), who designed an easy-to-use web-based 

Bayesian estimation algorithm for a one-

compartment model, linear elimination and 

bolus intravascular dosing. Other possible 

models or routes of elimination, require an 

alternate program. 

This article serves as a review of the 

Bayesian method using a priori known                            

PKP estimates from a population.                                   

Illustration of the method’s utility to                     

estimate PKP using sparse sampling is achieved 

by use of an Add-in program for Microsoft 

Excel (named PKB-est, freely upon                   

request). Selected literature was included using 

PubMed using search terms Bayesian, 

pharmacokinetics, dose, individualization, and 

forecasting. 

 

2. BACKGROUND: WHY USE BAYESIAN 

PHARMACOKINETICS? 

 

2.1. Estimating PKP in the clinic 

Rational individualization of dosing 

regimens in the clinic is well achieved using a 

two-stage process (9). Before a drug is                     

given to a patient, one could estimate an initial 

dosage requirement using average population 

measures of PKP, with modification as  

required (Stage 1). Procainamide provides an 

example of how this could be done. The 

average Vd based on completed studies                               

is 2 L/kg in a patient with normal renal function 

(10). If a patient weighed 70 kg, the estimated 

dose to achieve a C0h of 6 mg/L would be 

calculated as 2 L/kg  70 kg  6 mg/L = 840 mg 

of procainamide base. If the patient had heart 

failure which is determined by estimation of a 

low creatinine clearance, then a Vd of 1.5 L/kg 

could be used (10).  

Once dosing has commenced there is an 

opportunity to better refine the dose 

requirements by obtaining some drug blood-

fluid (blood, serum, or plasma) concentration 

measures (Stage 2). This is usually superior to 

the population mean data as the blood fluid 

concentrations are reflective of the patient’s 

own pharmacokinetics. Procainamide for 

example follows a one-compartment open 

model and if two blood fluid concentrations 

were minimally available, some estimation of 

the patient’s PKP could be made for use in 

adjusting the dosage to achieve a desired blood 

fluid concentration.  
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Fig. 1. Pharmacokinetic estimation of a drug after 

intravenous bolus administration based on two drug 

concentrations in blood fluids. The true values and 

decline profile of a drug in a patient given 100 mg are 

shown as solid symbols and solid line. The open symbols 

and dashed line show what are measured from the assay. 

The table shows the true PKP values and those estimated 

from the measured plasma concentrations along with the 

fold-difference between the estimates. PKP, 

pharmacokinetic parameters; CL, clearance; Vd, volume 

of distribution.   

Based on a pair of concentration-time points 

after a discreet IV bolus dose of a drug that 

follows a one compartment open model such as 

procainamide, it is possible to estimate the PKP 

of Vd, CL, and terminal phase half-life (t½). As 

an illustrative example, after a dose of 100 mg, 

two samples were taken at 2 and 6 h after the 

dose (Fig. 1). The true situation would yield an 

initial concentration of 4 mg/L, t½ of 6 h, Vd of 

25 L, and CL of 2.89 L/h. However, these 

calculations rely on absolutely accurate 

measures of the concentrations and assume that 

the drug truly follows the model consistently 

throughout the post-dose period.  

No assay, however, is completely and 

consistently accurate. As part of their 

development, assays are validated to gain 

statistical information regarding the specificity 

and sensitivity of concentration measurements 

and the associated intrinsic error and variability 

(11). Over a range of known concentrations, the 

mean measure of each nominal concentration is 

determined. The percent coefficient of variation 

(CV%) is calculated as 100 ×
𝑆𝐷

𝑚𝑒𝑎𝑛
, where SD 

is the standard deviation. This measure reflects 

the precision of the assay and reflects how 

replicable a measure might be. For use in 

bioequivalence studies, for example, an assay 

should have a CV of less than 15% at most 

concentrations, and less than 20% at the lowest 

measurable concentration (12).  

In addition to the intrinsic degree of error 

associated with the measure of the plasma 

concentrations, there may also be some 

temporal deviation of the decline in 

concentration over the time period between the 

two concentrations due to physiological 

variability, which might differ slightly from 

another time interval. Either of these 

occurrences would contribute to an error in the 

overall mean PKP for this patient, which may 

lead to plasma concentrations falling outside of 

the confines of a therapeutic range, even when 

appropriate pharmacokinetic equations are 

used. 

To illustrate the importance of this 

consideration, let us assume that for our two 

blood samples the random analytical error (± 

15%) led to concentrations being measured that 

differed from the true values (Fig. 1). The 

measured concentrations allow for the estimate 

PKP by applying the equation below (Fig. 1): 

𝐶𝑡 = 𝐶0ℎ × 𝑒−
𝐶𝐿
𝑉𝑑

×𝑡 

It is apparent that there is quite a significant 

disparity between the true PKP values from the 

ones estimated from the plasma concentrations. 

There is no way of knowing the exact error 

in the measures, but error, nevertheless, should 

be expected. In this case, this random error can, 

in turn, lead to a miscalculation in the 

estimation of the patient’s PKP, which has 

important implications in the calculation of the 

optimal dose regimen. This random error is 

expected to follow a normal distribution and is 

additive based on intrinsic variability in a 

number of analytical steps such as pipetting of 

samples and solvents, extraction, derivatization 

yield, and volumes injected into the analytical 

instrument. Taking a larger number of 

concentration vs time points is apt to yield a 

more accurate value, but this is not a reasonable 

expectation in a clinical setting. Indeed, in 
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many cases, one might only have a single 

concentration available, which would render 

impossible even the most rudimentary 

calculation of PKP based on the estimation of 

t½ as shown in Fig. 1. 

  

2.2. Combination population-individual data 

methods: the Bayesian approach 

Bayes theorem, which serves as the basis for 

Bayesian PKP estimation, is grounded in the 

logic that the likelihood of an observation is 

dependent on factors known to be involved in 

the observation, and the variability known to be 

present in those factors (13). Its use in 

pharmacokinetics was first described in 1979 

by Sheiner et al. (14). It requires a relevant 

pharmacokinetic model, a measure of random 

error associated with the concentration 

measures and the known population estimates 

and variances for the model-associated PKP 

(14,15). The inclusion of the population PKP 

estimates is important because the likelihood is 

high that a patient’s individual PKP will be 

within a range of values incorporated within its 

measures of known central tendency and 

surrounding variance. The combination of these 

population inputs offers an advantage from 

using only the measured concentrations with 

their inherent random error, a factor that 

becomes more problematic with lower numbers 

of samples.  

In Bayesian pharmacokinetics, the 

likelihood of the PKP parameter being true is 

measured by an objective function (OBJBayes), 

which incorporates elements of the model and 

known a priori measures of central tendency, 

variance and errors. The likelihood is optimized 

by minimization of the OBJBayes using 

computerization nonlinear algorithms for 

solving complex relationships. For 

pharmacokinetics OBJBayes is defined as (14): 
 

OBJBayes = ∑
(Pj − Pĵ)

2

σPj

2

p

j=1

+ ∑
(Ci − Cî)

2

σi
2

n

i=1

 

where:  

𝑃𝑗  and �̂�𝑗  are the estimated and the observed 

(population) jth PK parameter, respectively. 

𝐶𝑖  and �̂�𝑖  are the observed and the patient’s 

estimated (based on the PK model and 𝑃𝑗 ) 

concentrations, respectively. 

The  refers to the standard deviations of the 

population PK parameter (Pj) and the random 

error for the ith concentration measurement. 

The example in Fig. 1 can be used to 

demonstrate the use of the OBJBayes. The true 

patient data is reflective of a person with true 

average values of CL and Vd, with population 

SD being 25% for each in this case. The 

observed concentrations are associated with a 

certain degree of intrinsic error, which is 

reflective of the validation of the assay. At the 

concentrations levels measured, the percent 

coefficient of variation, a measure of precision, 

is 15%, meaning that the observed 

concentrations have possible values of 3.65  

0.55 and 1.70  0.26 mg/L. Thus, the OBJBayes 

is calculated as:  

 
 

In the equation, the values of 18.7 and 3.57 

represent the values estimated based on the 

slope of decline over time in the log-

transformed concentrations using the measured 

concentrations (Fig. 1). However, there is likely 

error associated with the concentration 

measures and hence these estimates of PKP are 

expectedly prone to some degree of error. In the 

right-hand part of the equation, if we assume 

that the patient has the population means of CL 

and Vd, the concentrations would be 3.17 and 

2.00 mg/L as depicted in Fig. 1; these are 

subtracted from the observed values. The 

square of each of the differences in the 

numerator parts of the equation is each divided 

by the appropriate SD squared term, which is a 

form of weighting each component by the 

known variability in the assay measure and in 

the population PKP.  
By iteratively substituting values for the 

patient’s CL and Vd, which requires a computer 
program, and in turn re-estimating the plasma 
concentrations based on the pharmacokinetic 
model, it is possible to minimize OBJBayes. In 
most cases, this process can be minimized to a 
finite value. Once this is achieved, the final 
values of PKP represent the most likely 
estimates of those values for that patient. 
Another clinically useful aspect is that as the 
number of samples increases with continual 
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therapy, any subsequent concentration 
measures may be added to the existing values 
and minimization of the OBJBayes rerun through 
the program, allowing further fine-tuning the 
PKP estimates of the patient (increasing the 
number of concentrations tends to focus more 
of the OBJBayes on the patient-specific 
concentrations and less on population data). 
 

3. INFLUENCE OF VARYING MAGNITUDE OF 

VARIANCE IN ASSAY PRECISION AND 

POPULATION ESTIMATES ON A BAYESIAN 

ESTIMATION 

 
The Bayesian method incorporates both 

assay precision and variance in PKP to arrive at 
a most likely measure of pharmacokinetic 
parameters. Using the availability of two paired 
concentrations vs time points (Fig. 2), with 
varying degrees of assay variability and 
variance in the PKP of CL and Vd, it is possible 
to examine the benefits of the Bayesian method 
under those different conditions.  

The use of the exponential regression 
analysis of the two points alone without 
considering assay variability or variance in the 

population PKP leads to the largest error in the 
primary PKP of clearance and the volume of 
distribution (Fig. 2). When the assay is very 
precise, the estimates of the PKP become more 
precise either using the two-point method or the 
Bayesian method. Likewise increasing the 
population variance has the effect of increasing 
the error in PKP estimation. This is true of both 
low PKP or higher PKP true values. On the 
other hand, the use of the Bayesian method 
resulted in estimates of primary PKP that were 
closer to the true values than by use of the two-
point exponential method alone. Even with high 
variability in the PKP, the Bayesian method 
brought the estimates closer to the true values. 

It would be expected that with a higher level 
of variability in the assay that there would be a 
reduced ability of the two-point method to 
accurately estimate the true value. When this is 
combined with a lower variability in the 
population PKP, it is apparent that the Bayesian 
method can very closely estimate the true 
variables. Even when combined with a high 
measure of variability in the PKP (50% CV), 
the Bayesian method still outperformed the 
two-point method. 

 

 
Fig. 2. Two drugs following a one-compartment model given as an intravenous bolus, with PKP being low (upper panels) 

or high (lower panels) in value. Error in concentrations is introduced at the limits of the assay coefficient of variation (as 

depicted in Fig. 1). Dashed lines indicate the true values. The x-axis scale shows the CV% of the assay (3 or 15%). The 

symbols represent: , values from regression analysis (see Fig. 1); ○, Bayesian estimate with 10% CV in population PKP; 

▲, Bayesian estimate with 50% CV% in population PKP. PKP, pharmacokinetic parameters; CV, coefficient of variation.  



Brocks and Hamdy / RPS 2020; 15(6): 503-514  

 

508 

 

In any event, it would never be possible to 

determine whether or not the measured 

concentrations had zero, or the maximum 

possible degree of error based on the CV%. We 

would also have to consider that on occasion an 

individual concentration measure even with a 

specified CV% will exceed the boundaries of 

the CV, and this would lead to even more error 

in the estimate of the PKP if the two-point 

method were used.  

A limitation of the example shown in Fig. 2 

is that it illustrates the expectation for the 

simplest example of a drug, which follows a 

one-compartment model and bolus 

intravascular injection. Not only is this a rarely 

used form of drug administration, but also most 

drugs follow a multicompartmental model. An 

even more compelling issue is that the scenario 

includes two concentrations. What would one 

be able to do in a realistic clinical situation 

when only one sample measure is known after 

a dose? The Bayesian method allows for the 

ability to provide most likely estimates of PKP 

regardless of the route of administration, type 

of compartmental model, number of available 

samples, or kinetics of elimination, as long as 

the computer program used has the ability to 

incorporate these factors. 

 

4. COMPUTER PROGRAMS AVAILABLE 

FOR BAYESIAN ESTIMATION OF 

PHARMACOKINETIC PARAMETERS 

 

Several commercially available products are 

marketed for Bayesian estimations of PKP (16), 

but these are designed for use in the clinic                      

and the licensing costs are likely                        

prohibitive for many educational institutions 

(Table 1).  

Because they focus on therapeutic drug 

monitoring for a few specific drugs, they also 

automatically calculate dose regimens for the 

user. While this is undoubtedly optimal for 

clinical practice, in the classroom this may 

allow the program to do too much of the work, 

and thus remove instructors' desire to have the 

student perform the necessary tailoring of the 

dose regimen themselves using the Bayesian 

PKP estimates. There are some complimentary 

share-ware no-cost versions of software 

available as well (17), of which some may 

require programming expertise. 

In the absence of a program, the teaching of 

this technique to students becomes theoretical 

only and lacks hand-on or demonstrable 

pedagogy. Some of the programs are very 

expensive making them inaccessible for 

accessibility and for the comprehensive training 

of students about the method. The limitation in 

training has been identified as a limitation to the 

use of the Bayesian method in the clinic (18). 

There are two free of cost programs available, 

Bestdose and PKB-est. The latter is an add-in 

program for Microsoft Excel for Windows 

(Redmond WA) which is based on the Visual 

Basic language within Excel. Examples of the 

utility of this feature to be used within Excel 

include PKSolver (19) and uSIMPK (20) (for 

teaching pharmacokinetics through 

simulations).  

 
Table 1. Known programs for performing Bayesian estimations of pharmacokinetic parameters in patients. Each of 

the sites was accessed on April 2nd, 2020. 

Program Cost Advertised models 

Adult and pediatric Kinetics 

http://www.rxkinetics.com/apk.html 
$390 network license 

Aminoglycoside antibiotics, one and two-

compartment intravenous 

BestDose http://www.lapk.org/bestdose.php Free 
Selected drugs, one and two compartment, 

multiple routes 

DoseMeRx https://doseme-rx.com/ Not stated* Vancomycin iv 

Insight-Rx https://www.insight-rx.com/ Not stated* Numerous drugs mostly intravenous 

Precise PK https://precisepk.com/pricing $99 to $149 per month Numerous drugs and routes 

TCIWorks 

Advertised website links (6,7,17) are inactivated 
Unknown Aminoglycosides and vancomycin  

PKB-est Free upon request General use 

* Currently not stated but apparently higher than Precise PK (16).  

 

  

http://www.rxkinetics.com/apk.html
http://www.lapk.org/bestdose.php
https://doseme-rx.com/
https://www.insight-rx.com/?gclid=EAIaIQobChMIpY20lsHK6AIVpCCtBh0gRgf1EAAYASAAEgJICfD_BwE#about
https://precisepk.com/pricing
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5. PREPARING FOR A BAYESIAN 

ESTIMATION  

 
The following information is required to 

facilitate a Bayesian estimation of PKP. This 

includes: 

 Time after the last dose or for constant 

infusion  

 The number of doses represented by that 

dose since dosing began 

 Concentration at that time 

An appropriate pharmacokinetic model is 

also a prerequisite for a Bayesian fit. This has 

to be based on prior pharmacokinetic 

information in the literature, something that an 

instructor can expect students to find (a useful 

example of finding drug information). 

Sometimes it is known that in certain disease 

states, such as renal disease, that the mean and 

SD of pharmacokinetic data differ from those of 

the general population. In such cases, it would 

be better to input those values into the dialogue 

box for mean and SD of population parameters. 

After selecting the model and appropriate 

pharmacokinetic estimations of central 

tendency and variability, the other integral 

piece of information needed is the error 

intrinsic to the assay being used to measure the 

blood fluid concentrations.  

 
6. DEMONSTRATING THE UTILITY OF 

THE METHOD USING PKB-EST 

 
The PBB-est Add-in for Excel program was 

used here to demonstrate the utility of the 
Bayesian estimation process using a minimum 
of blood samples (between one and three per 
patient) and randomly generated patient 
pharmacokinetic data. For each model, the 
NORMINV function in Excel was used to 
create sample sizes of at least 25 simulated 
subjects given model drugs possessing PKP 
with set population mean and SD. The assay 
precision was set at 10% CV. For each regimen 
the same dose of the drug was given to each of 
the simulated patients and then, to mimic the 
clinical situation where only limited blood 
collection would be available, between 1 and 3 
randomly selected concentrations were 
obtained. The values of the true concentrations 
were calculated based on the preset randomized 

patient PKP of each simulated patient. After 
these samples were drawn and a concentration 
calculated, random error using the RAND 
function in Excel was applied to adhere to the 
10% CV of the assay. 

For the one-compartment model with linear 
elimination simulated data, the population 
mean ± SD for the CL/F were preset to either 
12 ± 4 or 3.0 ± 1.0 L/h. The Vd/F was preset to 
either 55 ± 11 or 100 ± 15 L. The oral dose 
population ka was 2.0 ± 1.0 h-1. For the two-
compartment model the population PKP were 
preset to 0.3 ± 0.06, 3.0 ± 1.5, 0.08 ± 0.02 h-1 
and 25 ± 5 L for k21, α, β, and Vc, respectively. 
The population ka for oral doses was 1.5 ± 1.0 
h-1. For drugs following a single nonlinear 
elimination process, population Vmax, km, Vd, and 
ka were set to 12 ± 4 mg/h, 4 ± 1 mg/L, 45 ± 5 L, 
and 2 ± 1 h-1, respectively. For repeat dose 
regimens, dosing intervals were set to 8 or 12 h.  

These population values, regimen, and 
concentrations were then input into the 
Bayesian modules and the predicted PKP were 
compared to the preset “actual” patient values.  

Overall assessment of the ability of the Add-
in program to find the patient values was 
accomplished using linear regression to find the 
correlation coefficient (r2), the slope of the 
relationships and significance of the 
relationship. A P-value of less than 0.01 was 
deemed to be significant. 

The relative error and relative squared errors 
of the Bayesian PKP estimates from the true 
values, and the population mean from the true 
value for each patient, were first determined. 
The difference between the errors and squared 
errors of the Bayesian PKP and the population 
values were then calculated, along with the 
associated 95% confidence intervals (21).  

With the simulated drugs and sparse 
sampling, regardless of the model very good 
correlations were apparent between measures 
of elimination with actual values were realized 
using the Bayesian approach. This included CL, 
Vmax, and CLint (Table 2, Figs. 3-5). The 
Bayesian approach tended to maintain the 
estimates to the population values for ka and km. 
Consequently, for these two parameters, there 
were no significant correlations realized. This 
may be attributed to the fact that these 
parameters are less likely to be related to overall 
measures of exposure compared to the values 
that yielded stronger correlations.  
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Table 2. Summary of all regression analysis r values from comparisons of Bayesian estimated pharmacokinetic 

parameters obtained using PKB-est to the true values (correlations of significance are depicted in Figs. 3-5). Significant 

relationships (P < 0.01) are denoted as *. 

Parameters 
One-compartment linear 

elimination 

Two-compartment linear 

elimination 

One-compartment nonlinear 

elimination 

CL/F 0.92* 0.95*  

Vdss/F 0.44* 0.68* 0.35* 

Vc/F  0.32*  

t½   0.62*  

t½ 0.75* 0.17*  

ka 0.17 0.23 0.076 

Vmax   0.60* 

km   0.17 

CLint   0.76* 

CL, clearance; Vdss, volume of distribution at steady state; Vc, volume of central compartment; t½α, distribution half-

life; t½β, elimination half-life; ka, absorption rate constant; Vmax, maximum velocity; km, Michaelis-Menten constant; 

CLint, intrinsic clearance. 
 
 

 
Fig. 3. Ability of the Bayesian approach to estimate PKP when doses of a drug following a one-compartment model with 

linear elimination were given as various dosing regimens to simulated patients. Correlation between true values and the 

Bayesian estimates were significant (P < 0.01) for each parameter except for ka (not shown). Data represent                                          

25 determinations for each of intravenous bolus, intermittent infusion, and oral dosing (single, multiple, and steady-state 

dosing) and continuous intravenous infusion. Data were estimated on sparse data (between 1, 2, or 3 blood fluid 

concentrations per subject). PKP, pharmacokinetic parameters; CL, clearance; Vd, volume of distribution. 

 

 

 
Fig. 4. Ability of the Bayesian approach to estimate PKP for a drug following a two-compartment model given as 

described in Fig. 3. Correlations between true values and the Bayesian estimates were significant except for ka. 

Intercompartmental estimates are k10, k12, and k21, and the Vc and Vss are the Vd of the central compartment, and steady-

state, respectively. Data construction and sampling is as described in Fig. 3. PKP, pharmacokinetic parameters; CL, 

clearance; Vd, volume of distribution. 
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Fig. 5. Ability of the Bayesian approach to estimate pharmacokinetic parameters when doses of a drug conforming to a 

one-compartment model with nonlinear elimination as described in Fig. 3. Significant correlations between the true patient 

values and the Bayesian estimates are shown. The ka and km were not significant. The half-life shown is the expected 

value when a dose is given that is well below the km of the drug (calculated as 𝑡1/2 =
0.693

𝐶𝐿𝑖𝑛𝑡/𝑉𝑑
). Data construction and 

sampling are as described in Fig. 3.  

 
The Vd estimates were significantly 

correlated in each case, although not as strongly 
as the estimates pertaining to drug elimination 
(Table 2). 

For the one-compartment model with linear 

elimination (Table 3), a significant 

improvement in precision (mse) and bias (me) 

achieved by the Bayesian method versus the 

population estimates alone were apparent for 

the absorption rate constant for the Bayesian 

compared to the population approach. Although 

there was no significant improvement in 

precision offered by the Bayesian approach, in 

all cases for the other PKP, the relative mse was 

negative, indicating a tendency towards 

improved precision compared to the use of the 

mean population estimates only. With a two-

compartment model (Table 3), significant 

improvements in precision were apparent for 

each of the CL/F, both Vd terms, and the t½. 

With nonlinear elimination, the Bayesian 

approach (Table 3) displayed significant 

improvement in precision compared to a solely 

population approach for the Vmax and CLint, and 

reduced bias (but not precision) for ka. 

Interestingly, bias and precision for km or Vd 

were not significantly improved by the use of 

the Bayesian method. 

 

7. ESTABLISHED CLINICAL UTILITY 

OF THE BAYESIAN APPROACH 

 

The ability of the Bayesian approach to 

better estimate PKP, and in turn dosing needs 

for individual patients, has been established for 

a number of drugs which have well-

documented and defined narrow therapeutic 

ranges of concentrations. These include 

vancomycin (22,23), mycophenolic acid 

(although specifics of the program used was not 

provided) (24), theophylline (25,26), 

aminoglycoside antibiotics (27-29), 

antiepileptic drugs (29-31), and digoxin (32). In 

many of these examinations, the use of the 

Bayesian method using a computer program 

yielded more precise modifications of doses to 

achieve target drug concentrations that did a 

non-Bayesian approach.  
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Table 3. Relative bias and precision of the ability of the Bayesian method using PKB-est to estimate the true patient 

parameters compared to that of the population mean data only. Random sparse simulated patient sampling (total of 1 

to 3 samples per individual per regimen) was used for the Bayesian estimation for simulated drugs adhering to a one 

or two-compartment models. Compiled data includes all dose regimens available (intravenous bolus, intravenous 

infusion, oral dosing as single or repeated dose administration). The error and squared error of the differences in the 

population means and true values, and the Bayesian estimates and true values, were first calculated. The data shown 

are the means of the differences between those errors (me, mean error; mse, mean squared error) of the Bayesian minus 

the population errors, and the associated 95% confidence intervals. 

pharmacokinetic 

parameters 

Difference of Bayesian minus population (95% CI) 

Errors 
One-compartment  

linear elimination 

Two-compartment  

linear elimination 

One-compartment  

nonlinear elimination 

CL/F me 0.063 (-0.13, 0.26) 1.3 (-0.48, 3.2)  
mse -0.92 (-1.87, 0.033) -250 (-340, -160)*  

Vdss/F me -0.25 (-1.6, 1.1) 11 (1.0, 21) -0.28 (-0.84, 0.27) 

mse -44 (-93, 5.5) -6400 (-8500, -4200)* 0.60 (-3.8, 5.0) 

Vc/F me  0.11 (-0.086, 0.30)  

mse  -2.1 (-3.5, -0.65)*  

t½  me  0.047 (0.033, 0.062)  

mse  -0.0056 (-0.010, -0.0017)*  

t½ me -1.3 (-3.5, 0.86) 1.45 (0.419, 2.48)*  

mse -42 (-92, 8.5) 57 (-16, 130)  

ka me -0.25 (-0.45, -0.050)* -0.48 (-0.57, -0.40)* -0.12 (-0.23, -0.020)* 

mse -0.56 (-0.77, -0.36)* 0.11 (-0.17, 0.39) 0.041 (-0.13, 0.21) 

Vmax me   0.034 (-0.54, 0.61) 

mse   -8.1 (-11, -5.5)* 

km me   -0.050 (-0.13, 0.028) 

mse   0.0933 (-0.0307, 0.217) 

CLint me   0.0408 (-0.112, 0.193) 

mse   -0.568 (-0.854, -0.282)* 

CL, clearance; Vdss, volume of distribution at steady state; Vc, volume of central compartment; t½α, distribution half-

life; t½β, elimination half-life; ka, absorption rate constant; Vmax, maximum velocity; km, Michaelis-Menten constant; 

CLint, intrinsic clearance. 

 

8. CONCLUSION 

 

The description of the Bayesian method for 

therapeutic drug monitoring was first proposed 

by Sheiner and colleagues (14) and has long 

been acknowledged (33) to hold promise in 

therapeutic drug monitoring. The same research 

group (14) had also earlier described (34) the 

use of nonlinear mixed-effects modelling, 

which is used extensively in current drug 

development to seek population estimates of 

PKP and covariates that can influence them.   

A comprehensive education in the clinical 

use of pharmacokinetics ideally should include 

some exposure to the Bayesian forecasting 

technique, which offers utility in the clinical 

setting for estimation of PKP (1-6,35,36). For 

the educational environment, there are limited 

affordable options for the availability of 

Bayesian estimation programs that can be used 

to demonstrate how a Bayesian estimation 

program works (Table 1). Although here we 

used a free-to-use computer program to 

demonstrate the utility of Bayesian estimation, 

the other available programs listed in Table 1 

were mostly developed to provide estimations 

of Bayesian PK and dosing requirements in for 

specific drugs in the clinic where therapeutic 

drug monitoring is critical for their safe and 

effective use. Those programs were compared 

recently in a study examining their ability to 

predict vancomycin dosing requirements (16). 

PKB-est is available free to instructors of 

clinical pharmacokinetics or clinical 

pharmacology by contacting the author (DRB).  
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