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Abstract 

 

Cancer is typically associated with abnormal production of various tumor-specific molecules known as tumor 

markers. Probing these markers by utilizing efficient approaches could be beneficial for cancer diagnosis. The 

current widely-used biorecognition probes, antibodies, suffer from some undeniable shortcomings. 

Fortunately, novel oligonucleotide-based molecular probes named aptamers are being emerged as alternative 

detection tools with distinctive advantages compared to antibodies. All of the existing strategies in cancer 

diagnostics, including those of in vitro detection, can potentially implement aptamers as the detecting moiety. 

Several studies have been performed in the field of in vitro cancer detection over the last decade. In order to 

direct future studies, it is necessary to comprehensively summarize and review the current status of the field. 

Most previous studies involve only a few cancer diagnostic strategies. Here, we thoroughly review recent 

significant advances on the applications of aptamer in various in vitro detection strategies. Furthermore, we 

will discuss the status of diagnostic aptamers in clinical trials. 
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1. INTRODUCTION 
 

Cancer, as one of the most important health 

problems, is mainly originated from some 

genetic or epigenetic alterations and typically 

represented as uncontrolled cell growth with 

abnormal production of various molecular 

products (1,2). Probing cancer-specific markers 

called tumor markers, which are mainly 

resulted by the alterations could be beneficial 

for cancer diagnosis and management. 

Therefore, utilization of efficient approaches 

for punctual and accurate tumor marker 

recognition is of great clinical significance (3). 

The ability of the conventional tumor marker 

recognition strategies is restricted by the lack of 

proper detecting agents. Current widely-used 

biorecognition probes, antibodies, suffer from 
limited chemical modification, easy denaturation 

and degradation, animal-dependent production, 

poor penetration (due to large size), and 

immunogenicity (4,5). Fortunately, another 

class of molecular probes named aptamers, 

which can efficiently recognize a range of 

targets from small molecules to the whole intact 

cells, are being emerged as alternative detection 

tools with distinctive properties (5-7). 

Aptamers are typically obtained from an 

oligonucleotide (single-stranded DNA or RNA) 

library using a cyclic selection process known 

as the systematic evolution of ligands by 

exponential enrichment (SELEX) (8-11). The 

target binding occurs through their three-

dimensional structure with reasonable affinity 
and specificity at low target concentrations.Their 

binding affinity is comparable to that of 

antibodies (9,12,13).   
There is a growing interest in aptamer 

investigations. A search on Science Direct 

database (https://www.sciencedirect.com/) on 

January 10th, 2020, showed a progressive 

increase in the number of the review or research 

articles, in which their keywords, title or 

abstract include the word “aptamer” since the 

year 2000 (Fig. 1).  
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Fig. 1. Number of articles published each year in the field of aptamer since 2000. The result of a search on Science Direct 

database on 10 January 2020 presenting the number of the review or research articles, which their keywords, title or 

abstract include the word (A) “aptamer”, and (B) “aptamer and biosensor”, have progressively increased since 2000. 

 

Several detection strategies have been 

introduced to date to detect oncological 

biomarkers both in vitro and in vivo. These 

strategies include tissue-related marker 

detection, enzyme-linked assays, flow 

cytometry, biosensing, and bioimaging. 

Aptamers could be used as the detection moiety 

in all of these approaches. However, the in vitro 

application of aptamers is more applicable since 

oligonucleotides would be degraded by various 

nucleases available in living systems. In some 

cases, the use of aptamer in place of traditional 

probes has certain advantages. For instance, 

because of the nucleic acid nature, immobilized 

aptamer probes in the plates of enzyme-linked 

assays could be simply reused for several 

experiments (14-16). In the case of biosensing, 

the conformational change of aptamers after 

binding to their intended targets makes these 

nucleic acid-based probes an appropriate tool 

for switchable systems.  

In this study, we will comprehensively 

review a variety of aptamer-based detection 

techniques used to visualize and quantify 

tumors. However, our focus will be on recent 

advances in use of aptamer probes for in vitro 

detection of various cancers. 

 

2. TUMOR-SPECIFIC APTAMERS FOR 

IN VITRO DETECTION OF CLINCAL 

SAMPLES 

 

Aptamers have been extensively used in 

vitro to detect a wide variety of cancers. There 

are numerous reliable tumor-markers in cancer 

tissues, on circulating tumor cells (CTCs), and 

soluble in the bloodstream of patients, which 

can be detected utilizing appropriate probes for 

a dozen of purposes such as early cancer 

diagnosis, molecular monitoring of treatment 

progression, prognosis, detection of invasion 

and metastasis, and biochemical monitoring of 

recurrence. 

Quantification of nucleotide aptamer can be 

easily achieved by quantitative real-time 

polymerase chain reaction (qRT-PCR). 

However, since aptamers could be easily 

chemically manipulated, various signaling tools 

including fluorescent agents, 

biotin/streptavidin- horseradish peroxidase 

(HRP) conjugates, and electro-chemicals could 

be implemented in aptamer selection 

techniques to give accurate and sensitive 

quantitative probes (17). In this regard, 

researchers developed a variety of aptamer-

based technologies for in vitro cancer 

diagnosis. Traditional quantifying strategies 

that have been adjusted to implement 

nucleotide aptamers as the targeting moiety 

consists of aptahistochemistry, aptamer-based 

enzyme-linked immunosorbent assay (ELISA), 

qRT-PCR, and aptamer-based flow cytometry. 

More recently, researchers have offered various 

innovative platforms to enhance sensitivity and 

accuracy of target detection including a variety 

of aptamer-based molecular biosensing 

techniques (18,19). 

 

3. APTAMER APPLICATION IN 

TRADITIONAL CANCER DETECTION 

METHODS 

 

The use of aptamers as a traditional in vitro 

cancer diagnostic tool has been frequently 
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reported in numerous studies. These include the 

detection of tumor markers on 

histopathological tissue sections and those 

present in circulation.  

 

3.1. Tissue-marker detection (aptahisto-

chemistry analysis) 

Along with the hematoxylin and eosin 

(H&E) staining of tumor tissue slides as the 

gold standard of cancer detection, 

histopathological immunostaining is also used 

to improve the sensitivity of recognition, 

predict prognosis, and determine subtypes of 

various cancers. In comparison with the 

application of antibodies in immunostaining of 

formalin-fixed paraffin-embedded tissue 

sections, aptamers are smaller, therefore 

penetrate more easily and efficiently (20). It has 

been also reported that the nonspecific signal of 

the necrotic area is efficiently omitted using 

aptamer probes (20). Visualization is usually 

carried out using 3′-diaminobenzidine 

tetrahydrochloride, as a horseradish peroxidase 

substrate, or fluorophores-based techniques 

(21,22). Fortunately, both of them are simply 

applicable in aptamer-based staining of tissue 

slides, because of the adaptable nature of 

nucleotide aptamers (4,5). As shown in Fig. 1, 

an increasing number of studies have reported 

the use of aptamer in histopathological staining 

of tumor sections.  

In an investigation, Wang et al. generated a 

fluorescent dye-labeled aptamer named Wy-5a 

against prostate cancer, which could efficiently 

differentiate high-risk groups with metastasis 

from benign prostatic hyperplasia (22). In 

another study, Duan et al. introduced a 

fluorophore Cy5-labelled-aptamer having 

excellent selectivity for recognition of the 

metastatic prostate cancer (23). In 2017, Huang 

et al. produced a Cy5-labelled-aptamer against 

prostate cancer, capable of binding to its target 

in the microenvironment of tissue sections (24). 

In another work, Stuart et al. developed a 

biotin-labeled vitronectin binding aptamer to 

stain human breast cancer tissue slides. They 

also realized that in contrast to the monoclonal 

antibody which preferentially binds to the 

extracellular matrix and vessel walls, where 

vitronectin can become multimerized, the 

aptamer directly binds to tumor cells, with 

much lower binding to extracellular matrix 

(25). Shigdar and her colleagues reported their 

isolated aptamer against epithelial cell adhesion 

molecule, a type I glycosylated membrane 

protein, which is more sensitive and specific 

than existing antibodies for the detection in 

breast cancer tissue slides. This aptamer 

showed no non-specific signal with tissues 

negative for expression of epithelial cell 

adhesion molecule (25). Using biotinylated 

anti-estrogen receptor aptamers and HRP-

streptavidin, Ahirwar et al. reported their 

successful attempt in estrogen-receptor (ER)-

positive breast cancer tissues (26). The results 

demonstrated that their aptamer-based 

histopathological tissue staining can be used 

efficiently for proper grading of ERα 

expression (26). In another study by using 3′-

diaminobenzidine tetrahydrochloride and HRP, 

Han et al. developed an aptamer against matrix 

metalloproteinase 2 and confirmed its potential 

in binding to the target on tissue sections (21). 

Yuan et al. selected and labeled (with 

fluorescent dye Cy5) an aptamer with the 

ability to distinguish lymph node tissue sections 

with colorectal cancer metastasis using cell-

SELEX on metastatic colorectal cancer cell 

lines (27). 

 

3.2. Detection of circulating markers 

Detection of circulating tumor markers has 

great importance in management of the disease 

because cancer tissues are not always 

accessible. Sometimes, cancer cells are located 

in remote parts of the body making them 

unreachable (28). Also, the removal of tissue 

samples via a biopsy or surgical procedure is 

considered an invasive procedure with 

noticeable post-operational complications (29). 

In addition, repeated sampling is almost 

impractical; therefore, histopathological-based 

methods are not appropriate for monitoring of 

cancer progression or treatment. Unlike tissue-

specific markers detected in histopathological 

immunostaining, some circulating tumor 

markers could be spotted at the early stages of 

cancer, allowing early detection and 

intervention (30,31). 

Using appropriate aptamers, circulating 

tumor-markers including soluble proteins, 

analyst, and CTCs can be effectively spotted 
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through a dozen of methods converting 

detection to an assessable signal. These 

strategies include qRT-PCR, ELISA, flow 

cytometry, and molecular biosensing. 

 

3.2.1. qRT-PCR 

Quantification of nucleic acids is simply and 

reliably achievable using qRT-PCR (32,33). 

The exact amount of the initial nucleic acids is 

calculated using a standard curve drawn with 

known concentrations of the intended DNA 

(34). Consequently, by implementing this 

technique, it is possible to directly quantify a 

nucleotide aptamer which bind to the target of 

interest. In this way, the identified amount of 

each aptamer will be proportional to the amount 

of its specific target, excluding the need for 

expensive labeling of the detection aptamer. 

However, despite the use of this method in 

other areas (35-39), few studies on cancer have 

been performed in this regard (40,41). 

In a study, Li et al. could simply detect 

serum biomarkers of patients with lung cancer 

using magnetic carboxyl agar beads as the 

aptamer selection method and qRT-PCR as the 

quantification strategy. They showed that their 

pioneering aptamer-based system led to a much 

more sensitive diagnosis than the conventional 

antibody-based diagnostic methods (40). In a 

recent attempt to select reliable DNA aptamer 

against serum of colorectal cancer patients, Li 

et al. implemented qRT-PCR in the selection 

procedure, the assessment of the affinity and 

selectivity, and bio-detection in human blood 

samples (41). 

 

3.2.2. Aptamer-based enzyme-linked assay 
ELISA has been considered as a reliable 

quantitative assay in traditional cancer 
diagnostics, which uses antibody probes as the 
tumor marker recognizing moiety. Introducing 
nucleic acid aptamers as novel molecular 
recognition agents with some superior features 
comparing to traditional antibodies led to 
development of an aptamer-based ELISA 
named enzyme-linked aptamer sorbent assay 
(ELASA). Like the original antibody-based 
assay, ELASA can be performed in various 
modalities including direct, indirect and 
sandwich assay (Fig. 2). In addition to its 
general advantages, the specific benefit of this 
method is that the immobilized capturing 

aptamer can be simply reused by heating and 
refolding after each experiment (42). Also, 
there are a variety of innovative ways other than 
heating to make the plates practically reusable, 
including the use of chaotropic reagents, 
surfactants, or chelating agents (14-16). To 
validate a DNA aptamer-based sandwich 
ELISA, Lee et al. succeed in recognizing a 
well-known tumor-marker named lipocalin-2 
(LCN2) in the serum of patients with 
hepatocellular carcinoma. This assay platform 
benefits from a sandwich pair of aptamers 
including an immobilized NH2-modified 
capture-aptamer and an HRP-labeled reporter-
aptamer. The researchers claimed that the 
developed assay platform is capable of 
quantifying low-medium abundance tumor-
markers presented in patient serum ranging 
from ng to μg/mL (43). Ahirwar et al. 
established an aptamer-based ELISA to show 
the potential of their proper selected aptamer in 
probing target of interest related to human 
breast cancer (26). In another study, Ferreira et 
al. successfully designed an aptamer-antibody 
sandwich ELISA to identify and quantify mucin 
1 (MUC1) in solutions; therefore they could 
establish innovative diagnostic tools against 
this biomarker for detection of various epithelial 

tumors (44). Two innovative aptamer sandwich-
based microfluidic ELISA assays for recognizing 

free prostate specific antigen (FPSA) in patients 
with prostate cancer were developed by Jolly et 
al., where a DNA aptamer was used as the 
capturing probe and an antibody or a lectin was 
utilized as the detecting agent to quantify the 
target (FPSA) by chemiluminescence (45). 

 

 
Fig. 2. Schematic picture of enzyme-linked aptamer 

sorbent assay. (A) Direct target-aptamer ELASA; (B) 

sandwich aptamer-target-aptamer ELASA; (C) sandwich 

aptamer-target-antibody ELASA; and (D) sandwich 

antibody-target-aptamer ELASA, Enzyme-linked 

aptamer sorbent assay; HRP, horseradish peroxidase. 
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In a recent study, Zhu et al. used an enzyme-

labeled anti-MUC1 aptamer to establish an 

aptamer-based sandwich configuration of 

ELASA. In the proposed assay, the 

immobilized aptamer is fabricated on a gold 

electrode surface and the reporting aptamer is 

conjugated with HRP (46). In another study, 

Kavosi el al. utilized sandwich-type enzyme-

linked aptamer incorporation with 

electrochemical biosensors and gold 

nanoparticles as a triple signal amplification 

method to PSA (47).  

 

3.2.3. Aptamer-based flow cytometry 

Fluorophore labeled aptamers that are 

designed against cell surface tumor markers can 

be simply measured using flow cytometry 

technique. By implementing the cell-SELEX 

technique, our group validated a fluorophore 

labeled ssDNA aptamer against the B-

lymphocyte antigen (CD20). The expression of 

CD20 is various in different types of acute 

lymphoblastic leukemia (ALL), which helps to 

differentiate various types of the disease 

including B-cell precursor-ALL (30-50%), and 

mature B-cell ALL (80-90%). Using flow 

cytometry and fluorescein isothiocyanate-

labeled probes, we could ultimately distinguish 

B-cell with different expression of CD20 in real 

patient specimens of bone marrow (48). In 

another work on isolating DNA aptamer probes 

by a novel pipeline approach, Yang et al. could 

successfully define the phenotype of normal 

hematopoietic cells and acute myelogenous 

leukemia (AML) in patient samples by flow 

cytometry (49). In order to distinguish different 

types of cells (T- and B-cells) in patients with 

blood cancer, Shangguan et al. could develop a 

set of aptamer probes based on molecular 

differences between cells using cell-SELEX 

technique. Assessed by flow cytometry, the 

isolated aptamers with fluorescein 

isothiocyanatelabel could specifically 

recognize various cells in bone marrow 

aspirates, proposing specific tools for cancer 

detection and therapy (50). In an attempt made 

to generate a multivalent aptamer probe 

specifically binding to the B-cell receptors in 

patients with leukemia and lymphoma, 

Mallikaratchy et al. employed flow cytometry 

on tumor cell lines and real clinical specimen to 

show the ability of their selected aptamer in 

bivalent staining of the target of interest. They 

reported that their obtained bivalent aptamers 

could distinguish between patients with non-B-

cell malignancy, chronic myeloid leukemia, 

and those with B-cell malignancy, B-chronic 

lymphocytic leukemia, and hairy cell leukemia 

(51). In another study, Sefah et al. reported a 

properly isolated aptamer obtained using the 

cell-based selection technique with the ability 

to target AML cells in both cell culture and real 

clinical samples by flow cytometric assay. They 

also developed two other aptamers recognizing 

targets related to differentiation of monocytes. 

Their results showed the potential of cell-

SELEX and flow cytometry in recognizing 

subclasses of AML, and introduced new potent 

cell-membrane markers (52). Tan et al. 

introduced an innovative method based on 

aptamer-modified fluorescent silica 

nanoparticles to specifically target leukemia 

cells. The principle of the strategy is the 

formation of amid links between amino groups 

of amino-labeled aptamers and the carboxyl 

group of the carboxyl-modified fluorescent 

silica nanoparticles. Their final assessment was 

through flow cytometry and fluorescence 

microscopy to show the sensitivity and 

specificity of the isolated probes (53). Using 

flow cytometry analysis, Zhang et al. showed 

the power of the Cy5-labeled RNA aptamer 

targeting CD30 in detecting anaplastic large 

cell lymphoma cells and Hodgkin’s lymphoma 

cell lines both in cultured cells and mixed cell 

specimens (54). 

 

3.2.4. Aptamer-based detection of CTCs 

Tsai et al. proposed an integrated 

microfluidic system based on aptamer 

technology to establish an authentic way to spot 

ovarian CTCs which have extremely low 

concentration in peripheral blood circulation. 

The first step of the procedure is elimination of 

erythrocytes followed by depletion of white 

blood cells. Then the ovarian CTCs could be 

captured using appropriate aptamers. The 

authors claimed that their innovative approach 

yields a higher recovery rate for CTCs than the 

traditional methods using antibodies (55). 

Zheng et al. introduced a novel barcode particle 

technology using various dendrimer-amplified 
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aptamer probes in order to capture a wide 

variety of CTCs in the peripheral bloodstream, 

promising new perspectives in cancer detection 

using CTCs (56). Zamay et al. developed 

specific aptamer probes which were capable of 

detecting CTCs in peripheral blood of patients 

with metastatic lung cancer. They claimed that 

the aptamer could be rapidly and specifically 

generated for each individual patient, opening 

up the opportunity of personalized diagnostics 

(57).  

In an investigation, Li et al. developed an 

interesting method taking advantage of 

aptamer-functionalized hydrogels to catch 

CTCs and restriction endonucleases to 

efficiently release them (approximately 99%) 

(58). In another work on patients with non-

small cell lung cancer, a microfluidic assay was 

successfully set up based on a cocktail of 

synergistic aptamers. Implementing aptamer 

cocktails enhanced the performance of CTCs 

catch compared to solitary probes (59). 

 

4. VARIOUS TYPES OF SENSING 

STRATEGIES IN APTAMER BIOSENSORS 

Biosensing technology is emerging as an 

important strategy to visualize and quantify 

biochemical targets of interest. A biosensor, 

that calculates the concentration of a specific 

analyte by converting the molecular detection 

event into a computable signal, can be attached 

with various high-affinity bioprobes allowing 

efficient detection of intended biomolecules 

(18). Biosensors commonly composed of the 

following components: an analyte detecting 

part named bioreceptor, a signal transducer part 

converting detection of the analyte into a 

computable signal, electronic part for signal 

amplification, and a display part that visualize 

the outcomes (18). 

Using antibodies as traditional detecting 

agents, several studies have been done on 

biosensors aimed at cancer detection, most of 

them based on the sandwich detection system 

(19,60). According to the general advantages of 

aptamer probes, recent studies have tried to 

replace antibodies with their aptamer 

counterparts. In addition, the conformational 

change of aptamers after binding to their 

intended targets makes these nucleic acid-based 

probes an appropriate tool for developing 

switchable biosensing systems. Various sensing 

technologies including electrochemical (using 

impedimetric, voltametric, potentiometric, 

amperometric, electrochemiluminescence, and 

etc.), and optical sensors (using fluorophores, 

quantum dots, surface plasmon resonance, 

intercalating dyes, bioluminescent, and etc.) 

along with a variety of nanomaterials like 

metallic nanoparticles, graphene, graphene 

oxide, carbon nanotubes, and nanowires of 

different agents have been sophisticatedly 

incorporated to set up authentic bio-recognition 

tools to date(18,19). Schematic views of 

aptamer-based biosensing are depicted in Figs. 

3 and 4. 

 

 
Fig. 3. Schematic picture of electrochemical biosensing. The interaction between aptamers and targets impact electron 

transfer to the gold nanoparticle coated electrode, making signals proportional to the detected targets. (A) Conjugated 

aptamer-based approach in electrochemical biosensing and (B) free aptamer-based approach in electrochemical 

biosensing. HRP, Horseradish peroxidase; GD, glucose dehydrogenase; et, electron transfer; Au, gold; Fe(CN)6
4-/3-, 

Ferrocyanide. 
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Fig. 4. Schematic picture of fluorescence biosensing. Various types of fluorescence biosensors are depicted as described 

in the picture. (A) Simple fluorophore-labeled aptasensors; (B) fluorophore/quenchere-based aptasensors; (C) gold 

nanoparticle/fluorophore-labeled aptasensors; (D) quantum dot aptasensors; and (E) magnetic nanoparticle/fluorophore-

labeled aptasensors. 

 

4.1. Electrochemical aptamer-based 

biosensors 

 

In 2020, Zhou et al. introduced an 

electrochemical impedance sensor based on 

free aptamers, gold electrodes and ferrocyanide 

(Fe(CN)6
4-) to detect serum CD44 biomarkers 

in the range of 0.1-1000 ng/mL with a detection 

limit of 0.087 ng/mL(61). In another study, 

Safavipour et al. implemented TiO2 nanotubes-

reduced graphene oxide (TiO2 nanotube-rGO) 

to obtain MUC1 aptamer-based 

electrochemical biosensor to recognize breast 

cancer cells (MCF-7) (62). Presenting an 

electrochemical platform by gold electrodes 

and using a HER2-specific DNA aptamer, Sunil 

K. Arya et al. launched a powerful 

electrochemical aptasensor for breast cancer 

classification. Their developed aptasensor was 

able to detect human epidermal growth factor 

receptor 2(HER2) from 1 pM to 10 nM in 

unprocessed patient serum, promising future 

success in developing similar aptasensors for 

other possible protein tumor markers (63). In 

another study, a glassy carbon electrode (GCE) 

containing multiwall carbon nanotubes and 

poly glutamic acid was used by Yazdanparast et 

al. to set up a dual aptamer sandwich sensor 

detecting the breast cancer cell line, MCF7. The 

immobilizing probe was a MUC1 detecting 

aptamer and the recognizing part was an 

MCF7-binding aptamer with a silver 

nanoparticle label. In order to follow the 

electrochemical signal of the silver 

nanoparticles, the obtained sandwich 

electrochemical system used differential pulse 

anodic stripping voltammetry (64). Reporting a 

bipolar electrode system that benefits from 

electrochemiluminescence technology and 

using two aptamers detecting nucleolin, 

Motaghi et al. were able to sensitively detect 

cancer cells in the acceptable linear range of 10-

700 cells and selection limit of 10 cells (65). In 

an attempt to develop an accurate and efficient 
platform capable of tumor-marker detection, Nie 

et al. implemented electrochemiluminescence 

assay along with a non-enzymatic amplification 

and aptamer-triggered emitter release strategy. 

Therefore, they were able to improve the 

analytical accuracy of breast cancer biomarker 

recognition (66). Amouzadeh Tabrizi et al. 

could effectively capture and release 

promyelocytic leukemia cells (HL-60) from 

real patient serum using a novel nanomotor 

containing manganese oxide nanosheets-

polyethyleneimine with nickel/gold 

nanoparticles (MnO2-PEI/Ni/Au) and HL-60 

specific aptamers. The suggested 

electrochemical platform was able to detect 

cancer cells in the acceptable linear range of 25-

5×105 cells and the selection limit of 250 cells 

(67). Preparing the first complementary metal 

oxide semiconductor (CMOS) biosensor for 

electrochemical tumor detection via a peptide 
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aptamer-based microneedle exclusively binds 

to vascular endothelial growth factor (VEGF), 

Song et al. could directly spot the biomarker in 

unprocessed patient blood. The presented 

system, which benefits from a two-step 

capacitance-to-digital converter visualizing 

small changes in VEGF concentrations, could 

efficiently spot VEGF in the range of 0.1 to 

1000 pM (68). In another study, an elaborate 

electrochemical sandwich-based aptasensor 

containing tetrahedral DNA nanostructures-

aptamers on the outside of gold electrode as the 

capturing probe, the nanozyme Mn3O4 with the 

second aptamer as the first amplifying 

nanoprobe, and an HRP/complementary DNA 

(cDNA) nanoprobe to further intensify the 

signal was generated to specifically and 

sensitively detect the breast cancer HER2 

biomarker. Results demonstrated that the 

proposed platform can operate in a wide linear 

concentration range (0.1-100 ng/mL) (69). 

Implementing gold nanoparticles, platelet-

derived growth factor specific aptamer, and 

electrochemical measurement technology, 

Hasanzadeh et al. established an aptasensor 

assay capable of recognizing MCF7 breast 

cancer cell line. The researchers claimed that 

the developed electrochemical biosensor is 

applicable in straight patient plasma specimens 

(70). A complimentary list of similar works is 

presented in Table 1. 

 

4.2. Fluorescent aptamer-based biosensors 

A combination of cell-SELEX derived 

aptamer and gold nanoparticles were used to 

develop a strip biosensor against Ramos cancer 

cells in real human bloodstream by Liu et al. 

The proposed strip biosensor system provided a 

promising fast quantitative way to detect 

circulating tumor cells with a reasonable 

sensitivity (103). In an investigation, Bayat et 

al. constructed a fluorescent aptamer-based 

biosensor for detection of CD70-positive tumor 

cells and isolated a DNA aptamer against tumor 

marker CD70 (104). Gedi et al. designed an on-

chip aptamer-antibody based cancer-detecting 

platform containing a CA125-specific DNA 

aptamer, an immobilized antibody against 

CA125 and a three-dimensional network of 

carbon nanotubes. The authors demonstrated 

that this on-chip platform is superior to other 

approaches like graphene oxide-based and 

ELISA assays (105). An aptamer gold-

nanostructures immunochromatographic strip 

was introduced in a study aimed at quantifying 

a new tumor marker named N-

glycolylneuraminic acid by Gong et al. in 2018. 

The platform provided rapid and sensitive 

detection of the target of interest with a 

quantitative detection limit of 5.38 ng/mL 

(106). An innovative method based on 

bifunctional aptamer and catalytic hairpin 

assembly was designed and successfully 

applied by Liu et al. to efficiently detect cancer 

cells in clinical specimens. Division of the 

fluorophores from their related quenchers in the 

presence of captured cancer cells leads to signal 

production. The measurement of targets in real 

patient samples did not need any additional 

process (107).Luo et al. established a 

switchable cytosensor using hairpin DNA, 

including MUC1 aptamer and initiation strand 

of the catalytic hairpin assembly-mediated Y-

junction nicking enzyme assisted signal 

amplification circuits to identify MUC1 

positive breast cancer cells (MCF-7) (108). 

Using photoactive knowledge and aptamer-

based recognition technology, Mazhabi et al. 

set up a novel photoelectrochemical cytosensor 

identifying HeLa cervical cancer cell lines with 

a limit of detection of 5 cells/mL. In the 

proposed assay, g-C3N4-AgI nanocomposites 

were utilized as light-sensitive resources (109). 

In another work, molybdenum disulfide (MoS2) 

nano sheets and carcinoembryonic antigen 

(CEA)-specific aptamers with fluorescence 

labels were used by Zhao et al., to construct a 

fluorescent biosensor detecting CEA tumor 

marker in the patient specimens. Following 

probe-target interaction, a conformational 

change will be occurred leading separation of 

aptamer from the surface of the nanosheets and 

then the production of the fluorescence signal. 

The linear range of detection was reported to be 

100 pg to 100 ng/mL with the limit of 34 pg/mL 

(110). In an observational case-control clinical 

trial started in June 2015, 100 patients with 

bladder cancer are being monitored using a 

colorimetric aptamer biosensing approach to 

follow bladder cancer biomarkers (111). A 

complimentary list of similar works is 

presented in Table 1. 
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Table 1. Complementary list of studies describing aptamer-based biosensors in cancer diagnostics. 

Target Transducer 
Electrode/ 

Nanoparticle  

Aptamer-

label 

Ref

s 

Mucin 1 (MUC1) 

Surface Plasmon Resonance Au nanoparticles  (71, 72) 

Surface Plasmon Resonance Magnetic nanoparticle  (73) 

Electrochemiluminescence 

Au nanoparticles-

deposited glassy carbon 

electrode (depAu/GCE) 

 (74) 

Differential pulse voltammetry (DPV) 
negatively charged ITO 

electrode 
 (75) 

VEGF 

Surface Plasmon Resonance 
Carboxyl-coated 

polystyrene microsphere 
 (76) 

Cyclic voltammograms (CVs) 

/amperometric 

Glassy carbon electrode 

(GCE) 

Ag/Pt bimetallic 

nanoclusters 
(77) 

Electrochemiluminescence/electrochemic

al impedance spectroscopy (EIS) 

Cys-

CdS:Eunanocrystals 

(NCs) modified GCE 

 (78) 

PDGF 

Potentiometric 

a field-effect transistor (FET) 

Carbon Nanofiber 

Carboxylatedpolypyrrol

e-coated 

hybrid carbon 

nanofibers (CPMCNFs) 

 (79) 

Linear sweep voltammetry (LSV) Au nanoparticle  (80) 

Differential pulse voltammetry (DPV) 
Molybdenum selenide-

graphene composites 
 (81) 

differential pulse voltammetry (DPV) Au nanoparticle  (82) 

Fluorescence resonance energy transfer 

(FRET) 

poly-L-lysine (PLL)-

coated Au 

nanocomposites 

TAMRA (83) 

Carcinoembryoni

c (CEA) 

cyclic voltammograms (CVs): 

terminal deoxynucleotidyltransferase 

(TdT) 

CA ,chronoamperometry 

Au nanoparticle 

electrode 

Platinum electrode, and 

an Ag/AgCl electrode 

 (84) 

Cyclic voltammetry (CV)/SWV ,square 

wave voltammetry 

Au nanoparticle 

(AuNPs) 

rolling circle 

amplification (RCA) 
(85) 

Photoelectrochemical (PEC) 
CdS/TiO2/ITO PEC 

electrode 
 (86) 

Electrochemiluminescence 
ZnS-CdS/MoS2/glass 

carbon electrode 
 (87) 

Fluorescence AuNPs AgNCs (88) 

HER2 

Voltammetric 

electrochemical impedance spectroscopy 

(EIS)/ differential pulse voltammetry 

(DPV) 

Graphene oxide (GO) 

reduced graphene oxide-

chitosan (rGO-Chit) 

 (89) 

Differential pulse voltammetry (DPV) Au nanoparticles 

ferrocene-labeled 

DNA/Au nanospheres 

(FcNS) 

(90) 

Non-Faradic impedance spectroscopy 

(nFIS) 

Capacitor 

microelectrodes 
 (91) 

HepG2 

Impedimetric 

Electrochemical impedance spectroscopy 

(EIS)/ cyclic voltammograms (CVs) 

Au nanoparticles 

gold nanoparticles 

(AuNPs) modified the 

glassy carbon electrode 

(GCE) surface 

(Fe3O4/MnO2/Au@P

d) 
(92) 

Differential pulse voltammetry (DPV) 
HRP and platinum 

nanoparticles (PtNPs) 
 (93) 

Differential pulse voltammetry (DPV) 
HRP and MIL-

101@AuNPs 
 (94) 

 



Bakhtiari et al. / RPS 2020; 15(2): 107-122 

 

116 

 

 

 

4.3. Colorimetric aptamer-based biosensors 

There are a few recent studies on developing 

colorimetric aptamer-based biosensors for 

cancer biomarker recognition. For instance, in 

2020, Dong et al. developed a highly sensitive 

colorimetric aptasensor against the VEGF165 in 

human serum (112). Also in another recent 

study, Heydari Shayesteh and Ghavami 

stablished a label-free colorimetric aptamer-

based biosensor for highly sensitive 

determination of PSA using gold nanoparticles 

and a cationic polymer (113). Xu et al. 

developed a colorimetric aptasensor against K-

Ras, which showed a wide linear range (0.01-

150 nM) and the detection limit of 10 pM (114). 

In another study, Ahirwar et al. could 

successfully establish a nanoparticle-based 

colorimetric aptasensor recognizing the human 

estrogen receptor alpha in breast cancer (115). 

 

5. CONCLUSION 

 

Application of aptamers in cancer diagnostic 

has been studied for a long time and developed 

to meet the urgent need of an authentic probe in 

various detection approaches. Based on the 

distinctive advantages of nucleotide aptamers 

compared to antibodies including higher 

environmental stability (for all purposes), better 

tumor penetration properties (for 

aptahistochemistry), easier chemical 

modification (for all methods using labeled 

aptamers like fluorescent-aptamers), and the 

capability of conformational change for 

switchable systems (especially for biosensors), 

aptamers are now considered as promising tools 

for cancer diagnostics. Also unlike antibodies, 

label-free oligonucleotide aptamers could be 

simply quantified using qRT-PCR as an 

affordable quantifying approach. However, the 

in vitro application of aptamers is more 

applicable since oligonucleotides would be 

degraded by various nucleases available in 

living systems. Various types of 

oligonucleotide aptamers have been 

successfully isolated and employed in 

numerous cancer biorecognition strategies in 

vitro, including tissue-marker detection, 

enzyme-linked assay, flow cytometry, and 

biosensing. Various chemical and reporting 

labels like fluorophores, biotin, HRP, etc. leads 

toutilizing biomarker specific aptamers as 

detection moiety of various cancer diagnostic 

strategies. In particular, some multifunctional 

Table 1.)continued) 

Target Transducer Electrode/ Nanoparticle  Aptamer-label Refs 
     

MCF-7 

Voltammetric 

Electrochemical impedance 

spectroscopy (EIS)/ cyclic 

voltammograms (CVs) 

Au nanoparticles/graphene 

oxide 
 (95) 

Fluorescence Graphene oxide (GO) 
Quantum dots coated 

Silica nanoparticles 
(96) 

Chronoamperometry (CA) Au nanoparticles  (97) 

K562 leukemia cells 

Voltammetric 

Electrochemical impedance 

spectroscopy (EIS)/ differential 

pulse voltammetry (DPV) 

Magnetic nanoparticles  (98) 

Voltammetric 

Electrochemical impedance 

spectroscopy (EIS)/ cyclic 

voltammograms (CVs) 

Hemin/RGO/Au Nanoflower  (99) 

Fluorescence Graphene oxide (GO) 
Quantum dots coated 

Silica nanoparticles 
(96) 

HL-60 cells 

Electrochemiluminescence 

Au nanoparticles/ Graphene/ 

Cs 

ITO glass 

(Au NPs-GA-CS/ITO) 

 (100) 

Fluorescence Graphene oxide (GO) 
Quantum dots coated 

Silica nanoparticles 
(96) 

CD44 Fluorescence GO/Au nanoparticles  (101) 

hepatoma SMMC-

7721 cell 
Surface Plasmon Resonance Au nanoparticles 

Magnetic 

nanoparticles 
(102) 
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nanoparticle-based labels are developed for 

enhancing detection capability. In this study, 

the progress of aptamer applications in the field 

of cancer detection is summarized over recent 

years. Aptamer-based strategies are becoming 

gradually more common. As shown in Fig. 1, 

the aptamer-based investigation is a high-speed 

growing field, indicating the special place of 

this method in future studies. Although, the 

number of aptamer-guided biosensing studies 

has suddenly elevated since 2012, but its 

commercial applications are limited. The 

investigations will lead to improved existing 

aptamer-based strategies for biosensing and 

bioimaging, and promising better performance 

in the future. Until quite recently, the practical 
properties of two promising aptamer-based 

methods in cancer diagnostics are being evaluated 

in clinical trials. 
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