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Abstract 

 
There are many discrepancies around the effect of sex hormones on spatial learning and memory in rodents. 
The aim of the present study was to investigate the effects of chronic administration of estradiol (ES) and 
testosterone (TES) on spatial memory in adult castrated male rats. Cholinesterase activity of the 
hippocampus in treated animals was also measured to seek if hormonal treatment can change the 
acetylcholinesterase (AChE) activity in this region. Six groups of castrated male rats received different doses 
of ES valerate (1, 4, 10 mg/kg, by subcutaneous, sc) and TES enanthate (10, 20, 40 mg/kg, sc) in weekly 
injection intervals for 6 weeks. Morris water maze (MWM) was used to assess the spatial reference memory 
of the rats. The specific activity of AChE in the hippocampus was also measured. The treatment duration  
and the dose quantity of ES had significant (P<0.001 and P=0.048, respectively) effect on the learning 
ability in the rats. For TES treated rats, treatment duration showed a significant effect (P<0.001) on learning 
performance of the rats. The activity of AChE compared to the control group was significantly increased in 
ES treated rats in a dose dependent manner and it was decreased in the group that received the highest dose 
of TES. Our results showed that chronic high dose of ES decreased the learning ability of male castrated rats 
in a reference memory version of MWM test. This can be explained by the decreased AChE activity in the 
hippocampus. 
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INTRODUCTION 

 
Spatial memory is the ability of the brain to 

store information within a spatio-temporal 
frame (1). Spatial learning depends upon the 
integrated action of many brain regions and 
involves different neurotransmitter systems 
(2). Many studies support the notion that the 
information from the environment is stored in 
the hippocampus as a map-based 
representation (cognitive map) (3). 

It is shown that reduced cholinergic activity 
in hippocampus results in spatial memory 
deficits in rats (4-6). In humans, hippocampus 
and amygdala are major end points for the 
cholinergic fibers originating in the subnuclei 
of the basal forebrain (7,8). Degeneration of 
these fibers is associated with Alzheimer's 

dementia and possibly other forms of memory 
deficit observed in the elderly (9,10). 

Sex hormone receptors are abundant in the 
hippocampus (11-13) indicating their functional 
importance in this structure. There is a plethora 
of investigation regarding hormonal effects on 
hippocampal plasticity and spatial memory. Sex 
steroids differently change such aspects in 
hippocampal function as neurogenesis (14), 
cholinergic activity (15-21), hippocampal 
connectivity (12,22-25) and size (26-28). 

Gender differences in spatial learning 
ability are shown both in rodents (29,30) and 
in humans (31-34). Most results show a male 
superiority in spatial tasks (30) but female 
advantage (35,36) or no sex difference                  
results are also reported (37,38). These 
inconsistencies can be explained by some 
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factors such as methodological variables, age 
of the animals, the estrous cycle stage of the 
female animals, etc. (39). 

To the best of our knowledge there is less 
evidence on the effects of chronic 
administration of sex steroids, especially 
female steroids, on adult male rat performance 
in tests of spatial memory. In addition most 
studies have used single doses of sex 
hormones. The other issue is that there is a 
lack of evidence for the probable effects of sex 
hormones on acetylcholinesterase (AChE) 
activity in the hippocampus. The aim of our 
study was to investigate the effects of chronic 
systemic administration of two slow releasing 
esters of sex hormones, on spatial reference 
memory in adult castrated male rats. We have 
also measured cholinesterase activity of the 
hippocampus in tested animals to find if chronic 
sex steroids could change the cholinergic activity 
in this structure of the brain. 

 
MATERIALS AND METHOD 

 
Chemicals 

Chemicals used in AChE assay and 
normalization such as acetylthiocholine iodide, 
5,5'-dithiobis(2-nitrobenzoic acid), bovine 
serum albumin and Bradford reagent were 
purchased from Sigma Chemicals, USA. ES 
valerate and TES enanthate were obtained 
from Boditech Med Inc, Korea. 
 
Subjects 

Adult male Wistar rats (approximately 16 
weeks old) were obtained from the Pasteur 
Institute (Tehran, Iran). The housing place was 
temperature controlled (22 ± 2 °C) with a 12:12 
h light/dark cycle. All animal procedures were 
carried out in accordance with the ethical 
guidelines of the National Institutes of Health. 
All subjects were castrated bilaterally under 
ketamine/xylazine (100/10 mg/kg) anesthesia. A 
small incision was made at the posterior end of 
the scrotum to remove each testis. The remaining 
tissue was ligated with chromic gut suture (4-0) 
and the muscle and skin layers were stitched 
afterwards. 
 
Experimental groups 

Animals were divided into 7 groups of 8 
rats each. Three groups received doses of ES 

valerate (1, 4, 10 mg/kg, sc) and three groups 
received doses of TES enanthate (10, 20, 40 
mg/kg, sc) in weekly injection intervals for 6 
consecutive weeks. Doses and interval of 
injection were chosen according to previous 
studies (40-43). A control group received 
injections of sesame oil (0.5 ml) as the vehicle 
for the hormones. Behavioral testing began the 
day following the last injection.  

 
Water maze apparatus 

The spatial memory was assessed in the 
Morris water maze (MWM) (44). The maze 
was a black circular pool, measuring 150 cm 
in diameter and a height of 80 cm. The water 
level was 40 cm and its temperature            
was set at 22 ± 2 ºC. The pool was divided 
geographically into four quadrants named 
Northeast (NE), Northwest (NW), Southeast 
(SE) and Southwest (SW). A hidden circular 
platform (17 cm in diameter) was adjusted in 
the center of the south-west quadrant so that its 
surface was 2 cm below water level. The pool 
was surrounded by a black curtain on which 
spatial clues were pinned. Animal behavior 
was recorded by a video camera and analyzed 
by a computerized video-tracking system 
EthoVision XT6 (Noldus Information 
Technology, Netherlands)  
 
Behavioral assessment 

The test was done according to 
Pourmotabbed and coworkers with slight 
modifications (45). Before the training days 
rats went through two days of habituation 
sessions. On the first day the platform was 
positioned in the center of the empty pool and 
rats were put on the platform for 60 s. The 
second day the tank was full of water and the 
rats were put on the platform in the            
same position for another 60 s. When the                  
rats jumped off the platform they were guided 
back onto it.  

Training (acquisition) trials started the day 
after habituation days. Training took five 
consecutive days and each day consisted of 
four trials. In each trial the rat was placed in 
the pool from one of the randomly determined 
points of NE, NW, SE and SW. If the rat could 
find the platform within a time span of 60 s it 
was allowed to stay on it for 15 s, otherwise it 
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was guided to the platform and remained there 
for 15 s. The rats were then towel dried and 
kept in a heated cage. The inter-trial time was 
2 min for each rat. On the sixth day a probe 
trial was performed to test the spatial memory 
of the rats. In this trial the rats were allowed to 
swim in the pool for 60 s while the platform 
was removed.  

The total distance to the target platform, 
center of the previous position of the platform, 
was recorded during this period. This total 
distance is called search error which is a good 
reflection for spatial learning in MWM test 
(46). On the seventh day a similar trial to the 
training trials was done but with a visible cue, 
a Ping-Pong ball affixed to the top of a rod, on 
the platform. All distal cues were removed in 
the visible phase.  

This trial was done to assess any sensory 
defects or motivational factors that may 
interfere with the rat’s ability to escape (45). 
Other behavioral parameters such as speed of 
the animals and the distance moved within the 
30 cm outermost edge of the pool were also 
recorded. Animal speed was an indicator of 
locomotor activity. Thigmotaxis behavior was 
represented by the distance each animal moved 
near the wall of the pool. Trials were 
conducted each afternoon (13.00–18.00 h), and 
the order in which rats were tested was 
randomized each day.  

 
Assessment of serum hormone levels 

ES and TES were determined in serum by 
radioimmunoassay. Blood samples were 
collected at the end of behavioral testing. 

 
AChE assay 

The specific activity of AChE in the 
hippocampus was measured according to the 
spectrophotometric method of Ellman and 
colleagues (47) with slight modifications. 
AChE assay was performed after behavioral 
tests were finished. Briefly the whole brain 
was taken out from each rat skull and the 
hippocampus was removed according to Li 
(48). The dissected hippocampus was 
homogenized with a Silent Crusher 
homogenizer (Heidolph, Schwabach, 
Germany) in sodium phosphate buffer (30 

mM, pH=7.0) to make a 10% (w/v) 
homogenate.  

All the homogenates were centrifuged at 
12000 rpm at -4 ºC in a Hettich centrifuge 
(universal 320R, Germany) using a fixed angle 
rotor (1420 A) for 45 min. Supernatant was 
stored at -20 ºC. Aliquots of this supernatant 
were diluted in the ratio of 1:10 and used as a 
source of enzymes for the spectrophotometric 
assay. The protein content of each sample was 
also determined with the Bradford protein 
assay for normalization of the results.  
 
Statistical analysis 

Significant differences of the distance to the 
platform in the MWM test were evaluated by 
two-way analysis of variance (ANOVA) with 
repeated measures. Analysis of the probe trial 
results were performed by one way ANOVA. 
Tukey’s significant difference test was used 
for post hoc comparisons. Data for the AChE 
assay was compared to the control with 
student's t-test. Differences in serum TES and 
ES concentrations among the treatment groups 
were also analyzed using a t-test. 
 

RESULTS 
 
Serum hormonal levels 

The results of serum TES and ES levels are 
shown in Table 1. Hormonal levels of serum 
were compared in drug treated rats and the 
control group. Student's t-test showed that in 
both TES and ES treated rats the serum 
concentrations of the hormone increased in a 
dose dependent manner compared to the 
control group. 

 
Effects of testosterone on learning 
performance on the Morris water maze 

Two way repeated measures ANOVA was 
used to find the possible role of dose, day or 
their interaction on the learning ability of the 
rats. The test revealed a non-significant dose 
(F(3,28)= 2.14, P=0.1)) and a significant day 
(F(4,112)=29.5, P<0.001) effects for TES 
treated rats. There was not a significant dose-
day interaction (F(12,112)=0.85 , P=0.59) 
(Fig. 1). The probe trial results for TES 
treatment are shown in Fig. 2. 
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Table 1. Testosterone and estrogen concentrations (mean ± SEM) in serum collected after finishing 
behavioral tests. 

Group Testosterone (nmol/ml) Estrogen (pg/ml) 
Con 0.1 ± 0.07 26.5 ± 5.8 
TES10 (15.9 ± 2.4)* 20.2 ± 4.3 
TES20 (24.3 ± 3.2)** (16.9 ± 2.2)† 
TES40 (31.8 ± 2.6)*** (10.8 ± 3.6)† 
ES1 0.06 ± 0.04 (103 ± 17.2)* 
ES4 (0.05 ± 0.02)† (1985 ± 106)** 
ES10 0.08 ± 0.04 (3546 ± 186)*** 

*; Significantly increased compared to the control (P<0.05). 
**; Significantly increased compared to the control (P<0.01). 
***; Significantly increased compared to the control (P<0.001). 
†; Significantly decreased compared to the control (P<0.05). 
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Fig. 1. Mean path length to the platform for male castrated rats (n=8) injected weekly with sesame oil (Control), 
testosterone enanthate 10, 20, 40 mg/kg (TES10, TES20, TES40, respectively). Results are shown as mean-SD. 
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Fig. 2. Effect of testosterone treatment on performance of male castrated rats (n=8) in the Memory Recall Test. Animals 
are injected weekly with sesame oil (control), testosterone enanthate 10, 20, 40 mg/kg (TES10, TES20, TES40, 
respectively). Compared to the control group search error (total distance from the platform) is significantly reduced in 
TES20 and significantly increased in TES40 groups. Values are presented as mean+SD. *<0.05 versus control. 
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Fig. 3. Mean path length to the platform for male castrated rats (n=8) injected weekly with sesame oil (control), 
estradiol valerate 1, 4, 10 mg/kg (ES1, ES4, ES10, respectively). During 5 days of acquisition trials ES10 group showed 
a significant increase in path length on the fourth and fifth days of testing as compared to the control group. Results are 
shown as mean-SD. *<0.05 and **<0.01 versus control. 
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Fig. 4. Effect of estradiol on performance of male castrated rats (n=8) in the Memory Recall Test. Animals are injected 
weekly with sesame oil (control) and estradiol valerate 1, 4, 10 mg/kg (ES1, ES4, ES10, respectively). Search error 
(total distance from the platform) is significantly increased in ES10 as compared to the control group. Values are 
presented as mean+SD. *<0.05 versus control. 

 
One way ANOVA showed that the total 

distance to the platform does not differ for 
different doses of TES (F(3,28)=2.15, P=0.23) 
but as evident in Fig. 2, the effects of TES is 
not parallel in different doses and an All 
Pairwise Multiple Comparison showed that 
TES at 40 mg/kg and TES at 20 mg/kg were 
significantly different from the control group 
(P<0.05 for both). 
 
Effects of estradiol on learning performance 
on the Morris water maze 

In ES treated groups ANOVA showed a 
significant effect for days (F(4,112)=6, 
P<0.001) on the distances swum to the 

platform. There was also a significant effect 
for dose (F(3,28)=3.01, P=0.048) while the 
interaction of the dose-day was not significant 
(F(12,112)=0.65, P=0.79). Post hoc comparison 
showed a significant difference on the fourth 
(P<0.05) and fifth (P<0.01) days of                   
treatment between control and ES 10 mg/kg 
groups (Fig. 3).  

Fig. 4 shows the results of the probe trial in 
estrogen treated rats. One way ANOVA 
showed that the total distance to the platform 
differs for different doses of ES (F (3,28)=4.3, 
P=0.01) and post hoc comparisons indicated 
that estrogen at a dose of 10 mg/kg increased 
the total distance of the animals to the platform 
(P<0.05) compared to the control group. 
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Effect of hormonal treatment on AChE 
activity in hippocampus 

The specific activity of AChE was 
determined in the hippocampus of control and 
hormone treated rats after behavioral tests 
were finished. As shown in Fig. 5, the activity 
levels of AChE compared to the control 
increased significantly in ES 1 mg/kg 
(P<0.05), ES 4 mg/kg (P<0.01) and ES 10 
mg/kg (P<0.001) groups and it was decreased 
in TES 40 mg/kg (P<0.01) treated rats. 
 
Effects of testosterone and estradiol on 
thigmotaxis parameters in MWM 

To find the role of TES doses or passing 
days on thigmotaxis of the animals a two way 
repeated measure ANOVA was performed on 
the distance each animal moved beside the 
wall of the pool. The results showed that there 
was a significant effect for days 
(F(4,112)=34.9,P<0.001) but the effects of 
dose (F(3,28)=2.63, P=0.12) and dose-day 
interaction (F(12,112)=0.74, P=0.63) were not 
significant (Fig. 6A). 

For ES treated rats in a similar way there is 
a significant effect for days (F(4,112)=27.93, 
P<0.001) and a non-significant effect for dose 
(F(3,28)=1.15, P=0.56). Also there was not an 
interaction between the dose and the days 
(F(12, 112)=0.87, P=0.32) (Fig. 6B).  
 
Effects of testosterone and estradiol on speed 
of the animals 

Fig. 7 shows the results of the speed of 
animals in the 5-day test trials for ES and TES 
treated rats. ANOVA showed that there was 
not a significant effect for dose (F(3,28)=0.82, 
P=0.49) , day (F(4, 112)=0.59, P=0.66) and 
dose-day interaction (F(12,112)=0.97, P=0.47) 
in TES treated animals (Fig. 7A). ANOVA 
results for ES showed that the speed of the 
animals did not change in days 
(F(4,112)=0.86, P=0.59) and was not 
statistically significant among different doses 
of the drug (F(3,28)=0.75, P=0.38). Also there 
is not an interaction between days and doses 
(F(12,112)=0.64, P=0.23) for ES treated rats 
(Fig. 7B). 
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Fig. 5. Effect of sex steroids in the in vitro AChE activity in hippocampus. Male castrated rats were injected weekly 
with sesame oil (control), testosterone enanthate 10, 20, 40 mg/kg (TES10, TES20, TES40, respectively) and estradiol 
valerate 1, 4, 10 mg/kg (ES1, ES4, ES10, respectively) for 6 weeks. AChE activity was measured separately in the 
homogenates of hippocampus of control and treated rats (n=8) after maze tests. Values are mean + SD. *<0.05, **<0.01 
and ***<0.001 compared to the control. 
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Fig. 6. Mean daily path length within the thigmotaxis region. Male castrated rats were injected weekly with sesame oil 
(control), testosterone enanthate 10, 20, 40 mg/kg (TES10, TES20, TES40, respectively) and estradiol valerate 1, 4, 10 
mg/kg (ES1, ES4, ES10, respectively) for 6 weeks. Thigmotaxis distance decreased across days for both A; testosterone 
and B; estradiol  treated rats but there was not a change for dose or dose-day interaction. Data are shown as mean + SD. 
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Fig. 7. Mean daily velocity of rats in morris water maze. Male castrated rats were injected weekly with sesame oil 
(control), testosterone enanthate 10, 20, 40 mg/kg (TES10, TES20, TES40, respectively) and estradiol valerate 1, 4, 10 
mg/kg (ES1, ES4, ES10 respectively) for 6 weeks. The velocity did not change across days for both A; testosterone and 
B; estradiol treated rats and there was not a change for dose or dose × days interaction. Data are shown as mean + SD. 
 

DISCUSSION 
 

The results of the present study indicated 
that chronic high doses of estrogen results in 
deficits of learning and memory in castrated 
male rats and increases cholinesterase activity 
in the hippocampus. Chronic TES, on the other 
hand, diminishes cholinesterase activity in 
hippocampus and has positive effects on 
learning at the dose of 20 mg/kg. 

It has been shown that in many species, 
including humans and rodents, males are better 
than females in performing spatial tasks (31-
34). In our study we have concentrated on the 
effects of chronic (6 week) ES and TES 
treatment in castrated male rats which has not 
been previously addressed as far as we are 
aware. 

As shown in Figs. 3 and 4, ES (10 mg/kg) 
caused deficit in both acquisition (learning),  
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as shown through test trials, and retention 
(memory), as shown in probe trial. Although 
lower doses of ES did not result in significant 
changes in test trials, we observed a trend for 
the animals to have more distance to the 
platform with higher levels of ES in 
acquisition trials on days 3 to 5. The results 
also showed (Fig. 5) that ES increased the 
hippocampal AChE activity in a dose 
dependent manner. It is concluded that ES at 
10 mg/kg induced learning deficits possibly 
through AChE enzyme stimulation, and hence 
hippocampal ACh depletion. Regarding the 
role of ES in spatial tasks, researchers have 
found impairment, enhancement or no effects 
for this hormone. These discrepancies are 
attributed to the differences of experimental 
settings such as the age of animals, dose and 
route of drug administration, duration of the 
treatment, and type of the experiment used 
(49). There are many reports that stipulate an 
enhancing effect for long term ES on memory 
(18, 50-52) but none have used either the same 
task as we used or the male rats. There are 
basic differences in cellular and cognitive 
processes underlying different memory tests 
which may justify our opposing results (51). 

ES acts through multiple mechanisms to 
affect the memory. Its actions are mediated 
through either genomic or non-genomic 
signaling pathways (53). Studies show that ES 
can modulate many aspects of acetylcholine 
(Ach) neurochemistry. ES can increase 
neurons that synthesize choline 
acetyltransferase in the basal forebrain (BF) of 
female rats. BF is a brain area that sends 
cholinergic projections to the hippocampus 
and plays crucial role in mnemonic abilities 
(54). Estrogen enhances N-Methyl-D-aspartic 
acid or N-Methyl-D-aspartate receptor binding 
in CA1 region of the hippocampus in an Ach 
dependent manner (55). It also potentiates 
hippocampal ACh levels when this region is 
activated through learning processes (56). 

Previous studies have shown that there is a 
sexual dimorphism in hippocampal AChE 
activity with females having greater activity 
than males (57). This activity is believed to be 
regulated locally in the hippocampus (58). 
According to our results, we propose that ES 
itself may play a role in this regulatory 

process. High ES concentrations for a long 
enough time may lead to an increase in AChE 
activity in the hippocampus and eventually 
decrease the memory components in MVM 
test. Lowry and colleagues has reported an 
enhancement of memory for long term ES 
treatment in ovariectomized rats in the same 
MVM test (59). So this discrepancy may point 
to the possibility of the existence of a sexual 
dimorphism in estrogen effects on AChE 
activity. This can be more elucidated by 
performing same experiments on female rats 
as we have conducted on male rats in the 
present study.  

Based on AChE activity results it can be 
expected that TES at 40 mg/kg caused better 
performance on tests of learning and memory. 
The highest dose of TES induced the lowest 
AChE activity (Fig. 5) and unexpectedly 
impaired the memory. TES enhanced memory 
at 20 mg/kg as evidenced by a reduced 
distance to the platform on probe test (Fig. 2). 
This suggest that AChE activity may not be an 
essential determining factor in TES effects on 
memory. The pattern of TES effect on memory 
(Fig. 2) seems to fit into a hyperbolic shape. 
This finding can support human studies in 
which a curvilinear relation between spatial 
memory and TES concentrations (60-62) has 
been observed. McConnell and coworkers 
compared the effects of serum TES levels on 
working memory components in different 
human studies and concluded that there might 
be a ceiling effect for androgens such that 
physiologic concentration increases and 
supraphysiologic levels have no effect on 
working memory (63). In a series of animal 
experiments, Spritzer and colleagues has also 
found an inverted U shape trend for TES in a 
working memory version of the MWM test in 
castrated male rats (42). There is not much 
evidence for the mechanism of TES effects on 
memory as available on ES. 
Dihydrotestosterone, a major metabolite of 
TES, can increase synaptic density and 
neurogenesis in the hippocampus of male rats 
(64). It is shown that TES, like ES, can 
increase choline acetyltransferase synthesizing 
neurons in BF of gonadectomized male rats 
who have gone under TES treatment for 28 
days (65). Interpretation of TES effects on 
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memory becomes more complicated when it 
comes to the fact that TES can be converted to 
ES by the enzyme aromatase which presents in 
the rat hippocampal neurons (66,67). It can 
also be converted to estrogenic compounds 
such as 5-α androstane 3α, 17 β diol and 5-α 
androstane 3 β, 17 β diol and act through 
estrogen receptors (68). Most results with TES 
indicate that it can enhance spatial working 
memory in rats but evidences on the TES 
effects on spatial reference memory are scarce. 
Spritzer and coworkers showed that 
administrations of TES on the days of testing 
in MWM task has no effects on reference 
memory and TES can enhance memory only if 
it is administered for a long period of time (7 
days) before initiation of testing (42). Other 
experiments have shown that intrahippocampal 
TES can decrease reference memory when it is 
administered on testing days and before each 
experiment (13). These studies show that the 
duration of treatment and site of administration 
are important factors of TES effects on 
memory. 

Although the results of the repeated 
measures ANOVA indicated no significant 
effect for the parameter of dose in TES treated 
rats, it seems that there was a trend for the 
group received TES 20 mg/kg to perform 
better than other groups (Fig. 1). It may well 
be that certain (close to 20 mg/kg) doses of 
TES do facilitate this type of learning, but the 
conditions under which our experiments have 
been conducted has masked the effect.  

Our results also shows that in TES- and ES-
treated animals the respective blood 
concentrations of TES or ES are increased in a 
dose dependent manner (Table 1). So it seems 
reasonable to attribute behavioral or AChE 
activity to the hormonal alterations.   

The results of the MWM test may be 
influenced by some interfering factors such as 
changes in locomotor activity, thigmotaxis, 
and instinctive tendency of the animals to 
swim near the wall of the pool (69). As seen in 
Fig. 7, there is not a statistical difference in 
locomotor activity, evident from speed of 
animals, among different doses of ES or TES. 
For the thigmotaxis behavior the results 
showed (Fig. 6) that the percentage of time 
spent in the outer edges of the pool did not 

change statistically in different treatments and 
doses. So our analysis of the animals' behavior 
in MWM test has not been influenced by 
changes in locomotor acticity or thigmotaxis 
tendency of the rats. Performance of rats on 
the visible platform trial on the seventh day 
was not significantly different (P<0.05) 
among different groups (results not shown). 
This indicated that the results were not biased 
because of gross sensorimotor abnormalities in 
the animals. 
 

CONCLUSION 
 

In summary our results showed that chronic 
high sc dose of ES decreased the performance 
of male castrated rats in a reference memory 
version of MWM test. ES also increased the 
hippocampal AChE activity in a dose-
dependent manner and this may explain its 
subsiding effects on memory. Chronic high 
dose of TES (40 mg/kg) decreased 
hippocampal AChE activity. The effect of TES 
on memory occurred in an inverted U shape 
manner which was improved at 20 mg/kg. 
Similar studies on female ovariectomised rats 
can reveal if sex hormones can affect reference 
memory in a sex dependent way. 
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