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Abstract 

 
A quantitative structure–activity relationship (QSAR) study is suggested for the prediction of biological 
activity (pIC50) of 3, 4-dihydropyrido [3 ,2-d] pyrimidone derivatives as p38 inhibitors. Modeling of the 
biological activities of compounds of interest as a function of molecular structures was established by means 
of principal component analysis (PCA) and least square support vector machine (LS-SVM) methods. The 
results showed that the pIC50 values calculated by LS-SVM are in good agreement with the experimental 
data, and the performance of the LS-SVM regression model is superior to the PCA-based model. The 
developed LS-SVM model was applied for the prediction of the biological activities of pyrimidone 
derivatives, which were not in the modeling procedure. The resulted model showed high prediction ability 
with root mean square error of prediction of 0.460 for LS-SVM. The study provided a novel and effective 
approach for predicting biological activities of 3, 4-dihydropyrido [3,2-d] pyrimidone derivatives as p38 
inhibitors and disclosed that LS-SVM can be used as a powerful chemometrics tool for QSAR studies. 

 
Keywords: Principal component analysis; Least square support vector machine; p38 inhibitory activity; 
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INTRODUCTION 

 
Antagonists of p38 mitogen activated 

protein (MAP) kinase inhibit the production of 
proinflammatory cytokines, for instance, 
tumor necrosis factor-α (TNF-α) and 
interleukin-1β (IL-1β), whose accumulation 
initiates a cascade of events leading to 
inflammation and tissue destruction in diseases 
such as rheumatoid arthritis (RA) (1), Crohn’s 
disease (2), inflammatory bowel syndrome, 
and psoriasis. The inhibition of TNF-α and IL-
1β presents a useful therapeutic strategy to 
suppress the inflammation and prevent joint 
damage caused by RA, as shown by the newer 
biologic therapies for RA (etanercept, 
infliximab, adalimumab, and anakinra)                    
that target these cytokines. p38 MAP kinase is 
a member of a family of serine–threonine 
kinases that are activated by dual 

phosphorylation of a threonine glycine                  
and tyrosine (TGY) motif (3). This 
phosphorylation is performed by dual 
specificity kinases (MKK3 and MKK6 (4)) in 
response to extracellular stimuli such as 
osmotic shock, endotoxins (lipopolysacharide, 
LPS), UV light or cytokines (5).  

Therefore, pharmacological inhibition of 
p38 kinase is a potential way for treatment of 
inflammatory conditions due to excessive 
cytokine production.It has been nearly                  
40 years since the quantitative structure–
activity relationship (QSAR) the quantitative 
structure–property relationship (QSPR) 
paradigm first found their way into the 
practice of medicinal chemistry, analytical 
chemistry, toxicology, and ultimately most 
disciplines of chemistry (6). These methods 
are statistical models of dependent variable (a 
biological activity or a physical property) in 
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terms of computational descriptors. The 
developed model is helpful for understanding 
the factors controlling dependent variable 
(bioactivity) and for designing new potent and 
efficient molecules (7). QSAR models could 
describe large number of relationships 
between structural descriptors of drug like 
compounds and their bioactivities (8-20). 

Complex physiological molecular processes 
and systems need a multitude of measured 
variables and signals for their characterization. 
With the advent of modern computers, 
hardware and software, sophisticated 
molecular descriptor calculation software, 
efficient instrument and other molecular 
equipments, large masses of biologically 
relevant molecular data are gathered at an ever 
increasing pace. The acquisition of large 
masses of biologically relevant molecular data 
results in exploratory and interpretative 
challenges. 

The abundance of biological and 
physiological molecular data is not in itself a 
guarantee for obtaining helpful information on 
major events taking place in active site of 
target- in system of interest. On the contrary, 
data from the biological field require to be 
processed and analyzed, in order to highlight 
the useful information from the experimental 
measurements. Since these data regularly are 
highly multivariate in nature one must employ 
data analysis methods which are able to handle 
the challenges inherent in masses of data, 
notably noise, collinearities, and missing data. 
Only with a careful data analysis researchers 
will be able to address central questions such 
as how to modify molecular structure of 
investigated compounds interacted with a 
given protein in order to improve their 
biological performance, or to understand why 
a certain protein is particularly sensitive to 
exposure to a certain group of molecular 
structures.  

With the advancement of the technology 
and industry, the interest in nonlinear 
modeling and the development of 
mathematical tools to determine the behavior 
of biological phenomena have grown 
significantly, since the existing techniques for 
linear modeling cannot reproduce the full 
range of dynamic behaviors of real systems 

such as interactions between the ligand and 
receptor. The problem of identification of 
important features in biological systems is an 
area of research interest and has gained 
increasing significance. 

Based on the structural risk minimization 
principle, an excellent machine learning 
method of support vector machine (SVM) was 
first reported by Vapnik and coworkers (21). 
Compared with other machine learning 
methods, SVM has many attractive 
characteristics, including the absence of local 
minima, its speed and scalability and its ability 
to condense information contained in the 
training set (22).  

Hence, it can be said that a promising 
approach in nonlinear identification 
applications are the support vector machines. 
As a new and powerful modeling tool, SVM 
has been extensively used to QSAR research. 
However, when SVM is utilized to QSAR 
modeling, one of the most important problems 
is the selection of optimal features subset. It is 
well defined that large numbers of input 
variable vectors fed to SVM can increase 
computational complexity (23), suffer from the 
curse of dimensionality and the risk of over-
fitting. In contrast, a few input variable vectors 
that are not relevant to biological activity can 
result in bad generalization performance and 
accuracy. Consequently, the selection of 
optimized input variable vector subset is 
essential to speed up computation and to 
improve the generalization performance of 
SVM. Least square support vector machine 
(LS-SVM) proposed by Suykens and 
Vandewalle (24) is a modification of the 
standard SVM. Unlike artificial neural 
network based nonlinear models, LS-SVM 
possesses prominent advantages:  

over-fitting is unlikely to occur by adopting 
the structural risk minimization (SRM) 
principle, and the global optimal solution can 
be uniquely obtained by solving a set of linear 
equations (25). This study focuses on 
employing LS-SVM based on principal 
component analysis (PCA) to perform the 
pattern recognition of a class of potent 3, 4-
dihydropyrido [3,2-d] pyrimidone inhibitors of 
p38a MAP kinase. Although LS-SVM based 
on PCA has been applied for quantification in 
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different medicinal and pharmaceutical 
methods (26,27), to the best of our knowledge, 
the application of LS-SVM based on                    
PCA in pattern recognition for QSAR is very 
rare (14,19).  

 
MATERIALS AND METHODS 

 
Data preparation 

In vitro biological activity data used in this 
study were p38 inhibitory activity (in terms of-
log IC50) of a set of forty 3, 4-dihydropyrido 
[3,2-d]  pyrimidone derivatives selected from 
literature (28). General chemical structures and 

the structural details of these compounds and 
also their activities are reported in Table 1.  

The two dimensional structures of studied 
molecules were built using ChemDraw                  
7.0 (ChemDraw Ultra, 1985–2001; 
CambridgeSoft, Cambridge, MA, USA), and 
then converted to 3D structure using Chem3D 
Ultera 7.0 (Chem3D Ultra, 1985–2001; 
CambridgeSoft, Cambridge, MA, USA). Prior 
to the computation of the various molecular 
descriptors, all the structures were drawn               
and pre-optimized using the semi empirical 
quantum-chemical routine of AM1 
implemented in Hyperchem (29). 

 
Table 1. Structures and details of the molecules investigated. 
 
 
 
 
 
 
 
 

pIC50 d c b a Compound 
7.958 Cl H F H 1 
7.602 F H F H 2* 
7.494 Cl H Cl H 3 
7.309 Cl H H Cl 4 
7.026 Cl H H H 5* 
6.958 Me H H H 6* 
6.920 Br H H H 7 
6.698 NH2 H F H 8 
6.568 H H H H 9 
6.585 Me H H Me 10 
6.455 H Cl H Cl 11 
6.346 H H H F 12* 
6.288 H H H Cl 13 
5.847 NH2 H H H 14 
5.732 CF3 H H H 15 
5.701 OMe H H H 16 
5.659 H Cl H H 17* 
5.741 H CF3 H H 18 

 
 
 
 
 
 
 
 
 

pIC50 R' R Compound 
6.946 H H 19 
6.468 F F 20 
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Table 1. (Continued) 
pIC50 R3 R2 R1 Compound 
7.443 Cl COOMe Me 21 
7.420 Cl H Et 22 
7.327 Cl COMe Me 23* 
7.318 Cl H F 24* 
7.267 Cl H Me 25 
7.180 Cl NO2 Me 26 
7.096 Cl H COOMe 27 
7.000 Me H OMe 28 
6.958 Cl H CF3 29 
6.744 Me H H 30 
6.638 Cl CF3 Cl 31 
8.045 Cl COOMe Cl 32 
7.795 Cl COMe Cl 33 
7.721 Cl H Me 34* 
7.638 Cl COONH2 Cl 35 
7.602 Cl H Cl 36 
7.096 Cl CONH– Cl 37 
7.017 Cl COOH Cl 38 
7.161 Cl H H 39 
6.221 H H H 40 

* Molecules assigned as test set by Kennard and Stone algorithm 

 
A total of 297 molecular theoretical 

descriptors of different kinds were used as 
input to describe compound chemical 
diversity. Molecular descriptors were 
computed using the software DRAGON (30). 
The descriptor groups were constitutional, 
functional groups, topological, and 
geometrical. Molecular descriptor meanings 
and their calculation procedure are summarized 
in the software DRAGON, and explained in 
detail, with related literature references, in the 
Handbook of Molecular Descriptors by 
Todeschini and coworkers (31). 

Kennard and Stone algorithm was used to 
split the entire dataset of interest into two parts 
(around 80% as training set and 20% as test 
set), training set for constructing models and 
test set for assessing the predictive power of 
these constructed models.This is a classic 
technique to extract a representative set of 
molecules from a given data set. In this 
technique the molecules are selected 
consecutively. The first two objects are chosen 

by selecting the two farthest apart from each 
other. The third sample chosen is the one 
farthest from the first two objects, etc. 
Supposing that m objects have already been 
selected (m<n), the (m+1)th sample in the 
calibration set is chosen using the following 
criterion: 

),...,(min(max 21 mrrrnrm
ddd

≤<
 

Where, n stands for the number of samples in 
the training set, djr, j=1,..., m  are the squared 
Euclidean distances from a candidate sample r, 
not yet included in the representative set, to 
the m samples already included in the 
representative set. One more benefit of the 
Kennard–Stone method is that it may be            
used to any matrix of predictors; there              
are no restrictions regarding the matrix 
multicollinearity. The other advantage is that 
the test molecules all fall inside the measured 
region and the training set molecules map the 
measured region of the input variable space 
completely with respect to the induced metric. 
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Principal component analysis 
Principal component analysis is used for 

reducing the dimensionality of the dataset. The 
data matrix X consists of N molecules 
represented by M descriptors (297 columns). 

Prior to PCA in a typical QSAR study the 
matrix of dataset is regularly pre-processed by 
means of two operations: mean-centering and 
scaling to unit variance. With PCA, X matrix is 
decomposed into the product of two matrices, 
the (N × A) score matrix, T, times the (A × K) 
loading matrix, P´, plus an (N × K) “noise” 
matrix of residuals, E. 

X = TPT + E                                                            (1) 

In fact, PCA is based on the concentration 
of the original data variance into a small 
number of principal components (PCs) by 
means of mathematical transformation. As a 
result, the first PC describes the maximum 
information from the data; the second PC 
describes the maximum amount of the residual 
variance. Each successive PC is an orthogonal 
combination of the original descriptors such 
that it covers the maximum of the variance not 
accounted for by the previous components. 
 
Least square support vector machine  

Recently, the SVM, based on statistical 
learning theory, as a powerful new tool for 
data classification and function estimation, has 
been developed (21). SVM maps input data 
into a high-dimensional feature space where it 
may become linearly separable. In recent years 
SVM has been applied to an extensive               
variety of domains such as pattern recognition 
and object detection (32), function estimation 
(33), etc. 

One reason that SVM often performs better 
than earlier methods is that SVM was designed 
to minimize structural risk whereas previous 
techniques were usually based on 
minimization of empirical risk (34). So SVM 
is usually less vulnerable to the overfitting 
problem (35). Especially, Suykens and 
Vandewalle (35) proposed a modified version 
of SVM called least squares SVM (LS-SVM), 
which resulted in a set of linear equations 
instead of a quadratic programming problem, 
which can extend the application of the SVM. 
Excellent introductions to SVM appear in 
Refs. (32,33). The theory of LS-SVM has also 

been described clearly by Suykens and 
Vandewalle (35). For this reason, we will only 
briefly explain the main idea of LS-SVM and 
the differences between SVM and LS-SVM. 

In LS-SVM, as in most linear regression 
models, linear estimation is carried out 
between the regressors (x) and the dependent 
variable (y): y=wTx+b, where w is the 
regression coefficient. The regression is 
calculated by minimizing a cost function (C) 
containing a penalized regression error, as 
follows: 

∑
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The first part of this cost function is a 
weight decay that is used to regularize weight 
sizes and penalize large weights. The second 
part of Eq. (2) is the regression error for all 
training data. After analyzing Eq. (2) and its 
restriction given by Eq. (3), a typical problem 
of convex optimization is formulated, this               
can be solved by using the Lagrange 
multipliers method. The LS-SVM model can 
be expressed as: 

bxxkay
n

i
ii +=∑

=1
),(                                   (4) 

where, k (x, xi) is the kernel function, xi is the 
input vector, ai is Lagrange multipliers called 
support value, b is bias term. In this study, the 
Gaussian kernel was used as kernel function 
and a cross validation procedure was used to 
tune the optimized values of the two 
parameters σ and γ.  
 
Validation of quantitative structure–activity 
relationship models 

There are several tools to estimate and 
calculate the accuracy and also the validity of 
the proposed QSAR model and as well the 
impacts of the preprocessing steps. Here, we 
have employed several techniques to ensure 
the effectiveness of the regression methods. 
Some of the common parameters used for 
checking the predictability of proposed models 
are root mean square error (RMSE), square of 
the correlation coefficient (R2), and predictive 
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residual error sum of squares (PRESS). These 
parameters were calculated for each model as 
follows:    

2
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where, yi is the measured bioactivity of the 
investigated compound i, iŷ  represents the 
calculated bioactivity of the compound i, y is 
the mean of true activity in the studied set, and 
n is the total number of molecules used in the 
studied sets.  

The actual efficacy of the generated QSAR 
models is not just their capability to reproduce 
known data, confirmed by their fitting power 
(R2), but is mainly their feasibility of 
predictive application. Hence, the QSAR 
model estimations were carried out 
maximizing the explained variance in 
prediction, assigned by the leave-one-out 
cross-validated correlation coefficient, Q2. 

Leave-one-out cross-validation (LOOCV) 
involves using a single molecule from the 
original samdataset as the validation dset, and 
the remaining o molecules as the training dset. 
This is repeated such that each molecule in the 
original datset is used once as the validation 
molecule. This is the same as a K-fold cross-
validation with K being equal to the number of 
molecules in the original sadataset. 

For a generated QSAR model, internal 
validation (including leave one out cross 
validation), although significant and essential, 
does not adequately assure the predictability of 
a developed model. In fact, it is very insists 
that models with high apparent predictive 
ability, highlighted only by internal validation 
methods, can be unpredictive when applied on 
new compounds not employed in developing 
the model. Thus, for a stronger estimation of 
developed model usability for prediction on 
new chemicals, external validation of the 
models should always be carried out (36). 

Also, the predictive ability of the regression 
model generated on the training set molecules 

is estimated on the predictions of the testing 
set compounds, by the R2

p (R2 for test set) that 
is defined as follows (36):  
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where, try  is the averaged value of the 
bioactivity for the training set; the summations 
cover all the molecules in the testing set. 

An accepted technique employed by 
researchers to defend their generated models 
against the danger of chance correlation 
between dependent and independent variables 
has been y-randomization that is, accidental 
correlation without any predictability for the 
developed model. y- randomization is a 
technique that said to be “probably the most 
powerful validation procedure” (38). 
Confirmation that a developed model is well 
established and not just the result of chance 
correlation is given by the new models 
obtained on the data set with shuffled 
bioactivity. If such models present 
considerably lower R2 and Q2 than the original 
model, it is suggest that QSAR models are not 
consequence of the chance correlation. 

 
RESULTS 

 
Principal component analysis summarizes 

the information residing in the initial data, i.e., 
in our case the theoretical descriptors, into a 
new variables which may be more easily 
overviewed and applied. The original multi-
dimensional space, defined by the calculated 
descriptors is contracted into a few descriptive 
dimensions, represented principal components, 
which denote the main variation in the data. 

Each PC can be displayed graphically and 
be analyzed separately, and its meaning may 
often be interpreted according to simple 
chemical and/or biological fundamental 
factors, such as, number of carbon atoms, 
molecular weight, volume, or something else. 
The greatest amount of variability of the 
original data set is implied by the first PC, and 
the second PC describes the maximum 
variances of the residual data set.  
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Then, the third one will explain the most 
important variability of the next residual data 
set, and so on. According to the theory of least 
squares, the eigenvectors of all PCs are 
orthogonal to each other in multi-dimension 
data space. Generally speaking, only p PCs are 
enough to account for the most variance in an 
m-dimensional data set, where p is the number 
of important PCs of the data set, and m means 
the number of all the PCs in the data set of 
interest.  

It is obvious that p is less than m. So PCA 
is generally regarded as a data reduction 
method. That is to say, a multi-dimensional 

data set can be projected to a lower               
dimension data space without loss most                  
of the information of the original data               
set by PCA (39).  

To explore the structure of pool of 
calculated descriptors, PCA was adopted on all 
the calculated descriptors, then 40 principal 
components (PCs) were generated. The 
variances explained by the first fourteen PCs 
are shown in Fig. 1. It can be found that the 
PC1 could explain more than 20% variance of 
all calculated descriptors, and variances 
explained by the latter PCs gradually 
decreased.  

 

 
Fig. 1.Variance explained by the first fourteen principal components. 

 
 

 
Fig. 2. Score plot of samples based on the first two principal components. 
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Fig. 3. Loading value analysis of the first 3 principal components. 
 

In total, the accumulative variance of the 
first fourteen PCs was up to 95%. So, it could 
be concluded that the first fourteen PCs could 
explain most of the variance of the calculated 
descriptors. After PCA procedure, a series of 
new variables (PCs) were generated, so every 
molecule could be denoted with the PCs, and 
the score plot is a description of molecules in 
the new defined space by PCs. As the PCA 
had compressed most variance of the 
calculated descriptors into the first several 
PCs, the score plot of the first PCs may reveal 
important information of recognition. Fig. 2 is 
the score plot of the first two PCs. It could be 
seen that most molecules were clustered together 
(the PC1 value of compound 34 is larger than 
other compounds but in the following we will 
be seen that this compound is not an outlier). 
So, it can be concluded that the first PCs 
contained the main characteristic for recognition 
of multi-dimensional data set include calculated 
descriptors, and the major information of 
descriptors had been compressed into the first 
PCs by PCA. 

As mentioned above, the first PCs were of 
great importance in explanation of variance in 
calculated descriptors. But how were these 
PCs generated from the 297 descriptors? It 
was very meaningful to explore the structure 
of the pool of descriptors. 

As PCs were constructed with a linear 
combination of the descriptors, the relationship 
between PCs and original descriptors could            
be uncovered by a group of weighting 
coefficients, which were also named as 
loading weights. Fig. 3 shows the loading 
weight analysis of the first 3 PCs. The greater 
the absolute value of a coefficient (loading 
weight), leads to the greater the weight of the 
descriptor in the PCA-based model. On other 
word, the high values of the coefficients 
(loading values) show the statistical 
significance of the descriptors in the final 
PCA-based model. 

It indicated that the 4 descriptors (with the 
higher absolute loading value in the 3 first 
PCs) played a very important role for 
construction of the PCs (Fig. 3). In other 
words the 3 first very important PCs were 
greatly affected by the 4 descriptors, include 
descriptor number 13 (TIE) with an absolute 
loading value in the first 3 PCs equals to 
0.523, descriptor number 22 (G(S,.Cl)) with an 
absolute loading value in the first 3 PCs equals 
to 0.632, descriptor number 25 (X1A) with an 
absolute loading value in the first 3 PCs equals 
to 0.534, and descriptor number 28 (X4A) 
with an absolute loading value in the first 3 
PCs equals to 0.518. 
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Table 3. The experimental pIC50 and the predicted values of the training and test sets and values of relative error 
of prediction by each model. 

Compound Experimental 
pIC50 

Predicted pIC50  
by PCR RE (PCR) Predicted pIC50  

by LS-SVM 
RE      

(LS-SVM) 
1 7.959 7.710 0.031 7.246 0.090 
2 7.602 7.361 0.032 7.213 0.051 
3 7.495 7.402 0.012 6.986 0.068 
4 7.310 6.907 0.055 7.044 0.036 
5 7.027 6.688 0.048 6.736 0.041 
6 6.959 6.431 0.076 6.979 -0.003 
7 6.921 6.851 0.010 6.611 0.045 
8 6.699 6.600 0.015 7.057 -0.053 
9 6.569 6.162 0.062 6.677 -0.017 
10 6.585 6.309 0.042 6.722 -0.021 
11 6.456 7.151 -0.108 6.910 -0.070 
12 6.347 6.504 -0.025 6.789 -0.070 
13 6.288 6.210 0.012 6.691 -0.064 
14 5.848 5.597 0.043 6.416 -0.097 
15 5.733 6.182 -0.078 6.444 -0.124 
16 5.701 6.119 -0.073 6.389 -0.121 
17 5.660 6.595 -0.165 6.646 -0.174 
18 5.741 6.375 -0.110 6.423 -0.119 
19 6.947 7.203 -0.037 6.864 0.012 
20 6.469 7.261 -0.123 6.824 -0.055 
21 7.444 7.569 -0.017 7.147 0.040 
22 7.420 7.099 0.043 7.047 0.050 
23 7.328 7.345 -0.002 7.122 0.028 
24 7.319 7.411 -0.013 7.202 0.016 
25 7.268 7.212 0.008 7.066 0.028 
26 7.180 7.247 -0.009 7.133 0.007 
27 7.097 7.338 -0.034 7.008 0.012 
28 7.000 6.850 0.021 6.943 0.008 
29 6.959 6.601 0.051 6.913 0.006 
30 6.745 6.944 -0.030 6.960 -0.032 
31 6.638 7.205 -0.085 6.758 -0.018 
32 8.046 7.636 0.051 7.405 0.080 
33 7.796 7.401 0.051 7.222 0.074 
34 7.721 7.138 0.076 7.275 0.058 
35 7.638 7.317 0.042 7.288 0.046 
36 7.602 7.329 0.036 7.076 0.069 
37 7.097 6.953 0.020 6.983 0.016 
38 7.018 6.455 0.080 7.092 -0.011 
39 7.161 7.153 0.001 6.998 0.023 
40 6.222 6.699 -0.077 6.705 -0.078 

 
Table 2 shows the selected descriptors, the 

absolute loading value in the first 3 PCs, their 
definition and class. Because TIE and G(S..Cl) 
belongs to the geometrical group of 
descriptors, some geometrical properties 

including angles between atoms, dihedrals 
angles, and atomic distances are probably 
important features in the effectiveness of 
compounds of interest in this study as p38 
inhibitors. 

Table 2. The most important descriptors in the first 3 PCs 

Descriptor Definition Descriptor class Absolute loading value 
TIE E-state topological parameter Geometrical descriptors 0.523 
G (S..Cl) Sum of geometrical distances between S and Cl Geometrical descriptors 0.632 
X1A average connectivity index chi-1 Topological descriptors 0.534 
X4A average connectivity index chi-2 Topological descriptors 0.518 
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Both X1A and X4A are belonging to 
topological descriptor class. Presence of these 
descriptors in the most important descriptors, 
basically accounts for size, shape, and 
branching, thus steric contribution to biological 
activity. With respect to the Fig. 3, the 
absolute positive sign of both X1A and X4A 
indicate that biological activity increases with 
an increase in the magnitude of size as well as 
branching of molecules.  

After acquiring PCs, linear regression with 
stepwise factor selection was performed. The 
obtained model consists of 7 terms, with one 
constant term and 6 terms based on different 
PCs. The model is given by the following 
equation: 
Predicted pIC50 =6.913+0.156*PC7-0.113*PC5-
0.118*PC6+0.067*PC1+0.238*PC14-0.162*PC10        (8) 

The calculated pIC50 for each molecule and 
relative error (RE) of prediction by model are 
summarized in Table 3. Experimental versus 
pre                                                                                                                                                            
dicted values for pIC50s of training and test                

predicted values for pIC50s of training and test 
sets, obtained by the principal component 
regression (PCR) modeling, is shown 
graphically in Fig. 4A.The residuals of the 
predicted values obtained by PCR are plotted 
against the experimental values in Fig. 5A.      
The spread of residuals in both sides of zero 
line showed that any systematic error                 
doesn’t exist in the development of the                  
linear regression method.The-cross-validation 
method employed was eliminating only one 
molecule at a time and then performing PCR 
on the remaining of training set (leave-one-out 
method). The activity of the left-out molecule 
was predicted by using the developed 
regression model. This procedure was repeated 
until each molecule in the training set had been 
gone out once. Experimental versus predicted 
values for pIC50 values for training and test 
set, obtained by the PCR modeling, is shown 
graphically in Fig. 4a. 

 

 
 
Fig. 4. pIC50 predicted values versus experimental values for training and test setsby: A; PCR model, B; least square 
support vector machine. 
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Fig. 5. Scatter plots of the residuals vs. experimental activity for A; PCR B; least square support vector machine . 
 
 
Table 4. Statistic parameters of developed models. 

Statistics 
                                 PCR                              LS-SVM 
Training set Test set Training set Test set 

N 32 8 32 8 
R2 0.659 0.506 0.859 0.865 
RMSET 0.413  0.256  
RMSEP  0.460  0.282 
PRESS 4.274 1.700 1.839 0.639 
Q2 0.523  0.846  
RMSECV 0.765  0.894  
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The residuals of the predicted values 
obtained by PCR are plotted against the 
experimental values in Fig. 5A. The spread of 
residuals in both sides of zero indicate that no 
systematic error exists in the development of 
the linear regression method. 

The developed PCR model was validated 
by some statistics parameters such as PRESS 
and RMSE for test and training sets and results 
are reported in the Table 4. It is clear that this 
model on the basis of statistics must be 
rejected.With respect to these results we 
decided to try a nonlinear regression method, 
least squares-support vector machine, to obtain 
robust and predictive model able to describe a 
relationship between the structure and p38 
inhibitory activity of the compounds of 
interest. On the other words, another way to 
find a relationship between the biological 
activity and PCs is a nonlinear modeling using 
PCs as input and LS-SVM as a regression tool. 

As explained in earlier section, as a linear 
method for dimensionality reduction, PCA can 
transform the input data set from its original 
form to its new form. In the case of a high 
number of input vectors (e.g descriptors or 
PCs), irrelevant, redundant, and noisy vectors 
might be included in the data set, 
simultaneously, meaningful vectors could be 
hidden (40). For a large number of input 
vectors, the probability of chance correlation 
also increases (41). Moreover, high number of 
input variables may prevent a nonlinear 
regression model (such as LS-SVM) from 
finding optimized models (42). Therefore, 
PCA input selection is essential in order to 
improve the accuracy rate of pattern 
recognition analysis with LS-SVM. After the 
PCA pre-processing procedure to the input 
vectors, all the PCs of a training set can be 
acquired. Then, the PCs were input to the LS-
SVM in sequence, i.e., the largest PC was 
employed as the input vector of the 
corresponding LS-SVM at first, and then the 
largest and the second largest one was 
employed as LS-SVM input data set. In the 
third step, the third largest one was also 
included in the input data set of LS-SVM, and 
so forth. The processes continued until all the 
PCs represented nearly all the variability of the 
training set were included in the input set. The 

optimum number of PCs that gives the best 
pattern recognition results was adopted to 
carry out the regression.  

In order to determine the optimum number 
of PCs for the LS-SVM model, the cross 
validation procedure was applied. There are 
several cross validation routines and “leave 
one subject out” was used in our experiments. 
As the training set was performed with 32 
molecules, the modeling procedure was carried 
out on 31 of them. The process was repeated 
32 times and predicted and experimental 
biological activities were compared. The root 
mean of square of errors for cross validation 
(RMSECV) was computed. A plot of the 
RMSECV against the number of PCs for             
each individual component indicates a 
minimum value for optimal number of factors 
(3PCs) (Fig. 6). 

LS-SVM was carried out with radial basis 
function (RBF) as a kernel functions. In the 
model development phase using RBF kernel, γ 
and σ2 parameters were a manageable task, 
similar to the process employed to select the 
number of factors for PCA-based regression 
model, but in this case for a two-dimensional 
problem. An advantage of LS-SVM over 
classical, SVM is that only these two 
parameters (but not three parameters as in 
SVM) are to be optimized, and during the 
grid-searching process, the mesh plot of the 
RMSCV changing could be visualized easily. 
It must be noted that the quality of developed 
LS-SVM model for regression depends on 
gamma and sig2 parameters. Gamma is a 
regularization parameter. Sig2 is a kernel 
parameter that must be optimized. To find out 
the optimal values of the parameters, a grid 
search was performed based on root mean 
square error for prediction set (RMSEP) and 
also root mean square error of cross validation 
(RMSECV). This grid search was performed 
on the original training set for all parameter 
combinations of gamma and sig2 from 1 to 
400 and 1 to 200, with increment steps of 1 for 
both of them. These ranges were selected on 
the basis of previous studies. A robust model 
is attained by selecting parameters that give 
the lowest error. The surface plots of 
RMSECV and RMSEP as a function of 
gamma and sig2 are shown in Fig. 7. 
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Fig. 6. Optimization number of principal components using root mean square error of cross validation.  
 

 
 

 
 

Fig. 7. Optimization the values of gamma and sig2 using A; root mean of square of errors for cross validation and B; 
root mean square error for prediction set in root mean square error for prediction set.  
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The results indicate that an LS-SVM with 
gamma of 28, and sig2 of 17 resulted in the 
optimum LS-SVM performance.  

The nonlinear regression method was 
trained using training objects and it was 
evaluated by test molecules. Predicted 
activities and relative error of prediction by 
model (RE) for training and test sets are listed 
in Table 3. Low RE confirms high predictivity 

of the model.Fig. 4B depicts the plots of 
observed versus predicted values for training 
and test sets. 

The residuals of the LS-SVM predicted 
values are plotted against the experimental 
values in Fig. 5B and show no systematic error 
in developed model.  

The Williams plot for PCR and LS-SVM 
models are reported in Fig. 8.

 

 

 
Fig. 8. Williams plot of A; PCR and B; least square support vector machine models. 



Prediction p38 inhibitor activity using PCA-LSSVM 
 

485 

DISCUSSION 
 

The advantages of LS-SVM are the 
robustness and ability to handle nonlinear 
responses more effectively in the regression 
step. The disadvantage is that it is somewhat 
computationally demanding, even after the 
model is built. However, with the ever lower 
price of computers with high performance, this 
is no longer a major limiting factor. Results of 
the two LS-SVM and PCR models have been 
reported in Table 4. 

An important validation test of the QSAR 
model can be accomplished by calculating 
predicted (Ypred) activity for the test set and 
comparing such estimates with the 
corresponding “experimental” values (Yexp). A 
regular way to quantify the predictivity in a 
typical QSAR study is through the RMSEP 
statistic. RMSEP is calculated as SQRT (Σ 
((Yexp − Ypred)2)/N),where N is the number 
of molecules featuring in the test set. An 
equivalent statistics is obtainable for the 
training set, however, we here call it root mean 
square error of training (RMSET) to 
distinguish it from RMSEP. Table 4 
summarizes the prediction results. 

The R2 for test set estimated by PCR and 
LS-SVM were 0.506 and 0.865, 
correspondingly, so these models explained 
the 50% and 86% of the variance for the 
experimental values of p38 inhibitory activity. 

As shown in Table 4, the RMSEP values 
match very well their RMSET counterparts. 
RMSEP and RMSET for LS-SVM model is 
significantly smaller than RMSEP and 
RMSET for PCR model.  

These are very encouraging results. As seen 
in Table 4, the RMSET, PRESS and RMSEP 
have decreased by using LS-SVM method. 
This means that LS-SVM is able to remove 
unqualified variables and noises; hence, the 
positive effect of the LS-SVM is more 
sensible.  

It can be seen that the LS-SVM model has 
higher square of correlation coefficient for 
training and test sets and fewer errors than the 
PCR model. Thus, the LS-SVM model 
produced more accurate results. On the              
other hand, the PCR model achieves faster 
training speed. 

Outliers in a typical QSAR study are 
molecules which are extensively separated 
from the main body of molecules in a dataset 
of interest. They are a common feature of 
many real data sets. The presence of outliers 
can have a deleterious effect on any further 
processing or regression of the data. A 
molecule in a given data set may be an outlier 
with respect to the independent vectors (e.g. 
PCs) and/or with respect to the dependent 
vector (e.g. biological activities). Regarding 
the first aspect, the leverage matrix, H, also 
called influence matrix, is an important tool in 
regression diagnostics containing information 
on the independent variables on which the 
model is constructed (43). The leverage 
matrix, H, is a symmetric matrix defined as: 

XXXXH T 1)( −=                                            (9) 

Where, X is the matrix consist of PCs of 
interest for model building, i.e. a matrix with n 
rows (where n is the number of molecules) and 
p columns (where p' is the number of model 
PCs). Molecules whose hii values are greater 
than a warning leverage limit (WLL) h* can be 
considered as having a great influence 
(leverage) on the developed model. The 
warning leverage limit h* is defined as:  

n
ph )1(3* +

=                                                    (10) 

Warning leverage limit for PCR and LS-
SVM models is 0.562 and 0.300 respectively. 
A leverage greater than the warning lever-age 
h* means that the compound-predicted 
biological activity can be extrapolated from 
the model, and therefore, the predicted value 
must be applied with great care. 

Regarding the second aspect, the 
standardized residuals in prediction can be 
calculated as the ordinary residuals in 
prediction divided by the residual standard 
deviation: 

ii
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ˆ
ˆ                                          (11) 

where, iê  is the standardized residual in 
prediction of the ith molecule, iiy /ˆ  and yi are, 
respectively, the predicted and the 
experimental activity of the ith molecule, hii is 
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the leverage value of the ith molecule and s is 
the standard error of the estimate: 

pn
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−

−
=
∑
=1

)ˆ(
                                    (12) 

where, iŷ  is the predicted biological 
activity of the ith molecule. Objects whose 

iê value is greater than 242 can be considered 
as outliers with respect to the dependent 
variable (biological activity). 

Leverage and standardized residuals in 
prediction are employed to build graphics 
(Williams Plot) for the detection of outliers 
and/or molecules with high influence on the 
results. It is used to visualize the applicability 
of domain (a theoretical zone in chemical 
space, defined by the model input vectors and 
modeled response, and thus by the nature of 
the compounds considered in the training set, 
as represented in each model by specific 
molecular PCs) of a QSAR model.  

The Williams plot, the plot of the 
standardized residuals versus the leverage (hii), 
defined the domain of applicability of the 
model as a squared area within ± 2 band for 
residuals and WLL for models. This plot can 
be used for an immediate and simple graphical 
detection of both the response outliers (i.e., 
molecules with standardized residuals greater 
than two standard deviation units, >2)                 
and structurally influential compounds in a 
model (h>h*). 

As mentioned above, the Williams plot for 
PCR and LS-SVM models are depicted in Fig. 
8. For PCR model, as seen (Fig. 8A), all 
molecules had acceptable leverage values 
while few have standardized residuals in 
prediction higher than the critical value 
(molecules 17, 20, and 39). For LS-SVM 
model, as can be seen in Fig. 8B, almost all 
molecules of interest used lie within area 
defined by standardized residual threshold and 
leverage.  

Actually, compound 37 has leverage higher 
than the WLL but show standardized residual 
within the limits. That is to say, it is any 
compounds completely outside the AD of the 
model, as defined by the vertical line (WLL). 
Thus, there are not any compounds that are 

both a response outlier and a high leverage 
chemical. 

 
CONCLUSION 

 
For the production of potent p38 inhibitor 

compounds it is necessary to have                 
reliable data of biological activity and                  
potency. Unfortunately, the availability of 
experimentally obtained data is very limited to 
be useful for screening purposes. QSAR 
modeling is an alternative approach applicable 
for filling data gaps, ranking compounds and 
thus producing p38 inhibitory activity lists. A 
promising regression model was developed to 
determine p38 inhibitory activity by 3, 4-
dihydropyrido [3,2-d] pyrimidone derivatives 
in a reproducible and reliable way by using 
LS-SVM based on PCA.  

The resulting procedure obtained for the 
direct determination of the p38 inhibitory 
activity without additional preprocessing is 
attractive, showing the potentiality of the LS-
SVM method that permits generation of simple 
models with no degradation in prediction and 
validation ability. Further investigations have 
to be performed to confirm the potentiality of 
this procedure. 
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