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Abstract 

 
A quantiatative structure property relationship (QSPR) treatment was used to a data set consisting of diverse 
3-hydroxypyridine-4-one derivatives to relate the logarithmic function of octanol:water partition coefficients 
(denoted by log po/w)  with theoretical molecular descriptors. Evaluation of a test set of 6 compounds with the 
developed partial least squares (PLS) model revealed that this model is reliable with a good predictability. 
Since the QSPR study was performed on the basis of theoretical descriptors calculated completely from the 
molecular structures, the proposed model could potentially provide useful information about the activity of 
the studied compounds. Various tests and criteria such as leave-one-out cross validation, leave-many-out 
cross validation, and also criteria suggested by Tropsha were employed to examine the predictability and 
robustness of the developed model. 
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INTRODUCTION 

 
The logarithmic n-octanol/water partition 

coefficient (Log po/w) is a very important 
property which concerns water-solubility, 
bioconcentration factor, toxicity and soil 
absorption coefficient of organic compounds. 
This property determines the fate of a drug in 
the body by governing the absorption, 
distribution, storage and elimination processes. 
Partition coefficient is the ratio of the 
concentration of a chemical in n-octanol to 
that in water in a two-phase system at 
equilibrium. The n-octanol/water partition 
coefficient is a generally accepted physico-
chemical parameter for characterization of 
lipophilicity (1). The logarithm of Partition 
coefficient, log po/w, has been shown to be one 
of the key parameters in quantitative structure-
property relationship (QSPR) studies. Log po/w 
is a standard property determined for potential 
molecules in 5th Lipinski’s rule (2). 
Lipophilicity affects drug absorption, 

bioavailability, hydrophobic drug-receptor 
interactions, and metabolism of drugs (1). 

The partition coefficient, po/w, for a given 
drug-like compound is defined as the ratio of 
concentrations achieved at equilibrium 
between the two different media as expressed 
mathematically in Equation 1, where A can be 
octanol and B is water. 

 
Quantitative structure property relationship 

(QSPR) research field provides medicinal 
chemists the ability to predict drug property by 
mathematical equations which construct a 
relationship between the chemical structure 
and the biological activity (3,4).These 
mathematical equations are in the form of y = 
xb+e that describes a set of predictor variables 
(x) with a predicted variable (y) by the means 
of a regression vector (b) (5). After the earlier 
QSAR studies by Hansch, who showed a 
correlation between biological activity and 
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octanol-water partition coefficient (4), it is 
now assumed that the sum of substituent 
effects on the steric, electronic and 
hydrophobic interaction of compounds with 
their receptor determines their property or 
biological activity (6-8).  

The first step in constructing the QSPR 
models is the selection of molecular 
descriptors that represent variation in the 
interested property of the molecules by a 
number (9). The selected descriptors then will 
be used for constructing statistical models. 
There are two types of QSAR/QSPR models: 
regression models and classification models. 
Among regression models multiple linear 
regression (MLR), principle component 
regression (PCR), and partial least squares 
(PLS) can be mentioned.  

There are some methods which are inspired 
by the nature of which genetic algorithm is the 
most widely used, (10-12). Factor analysis 
identifies the important predictor variables 
contributing to the response variable and 
avoids collinearities among them. PLS 
analysis as a factor analysis–based method 
omits the multi-colinearity problem in the 
descriptors. In this method, the descriptors 
data matrix is decomposed to orthogonal 
matrices with an inner relationship between 
the dependent and independent variables. 
Because a minimal number of latent variables 
are used for modeling in PLS; this modeling 
method coincides with noisy data better than 
MLR. 

Multiple linear regression yields models 
that are simpler and easier to interpret than 
PCR and PLS, because these methods perform 
regression on latent variables that don’t have a 
physical meaning. On the other hand, factor 
analysis–based methods can handle the 
collinear descriptors and therefore better 
predictive models will be obtained by PLS 
method (13).  

The mathematical relationships between 
molecular descriptors and activity or property 
are used to find the parameters affecting the 
partition coefficient and/or estimate the 
property of other molecules. In this paper, 
more than 600 topological, geometrical, 
constitutional, functional group and chemical 
descriptors were used to develop different 

QSPR models for the log po/w of the studied 
compounds. The method used in this study for 
model construction was; genetic algorithm-
partial least squares (GA-PLS). 

Here, based on the octanol/water partition 
coefficient of 30 compounds of interest, we 
report a QSPR model by the GA-PLS 
technique. The purpose of the present study 
was to investigate the relationship between the 
octanol/water partition coefficient of studied 
compounds and their theoretical molecular 
descriptors. Moreover, molecular descriptors 
were discussed to explore the influence of 
structural features on the values of Log po/w. 
This paper provided a simple and 
straightforward way to predict the Log po/w 
values of studied compounds from their 
structures and gave some insight into structural 
features related to the Log po/w values of the 
compounds. The prediction results are 
satisfactory. 

 
MATERIALS AND METHODS 

 
Software 

Two-dimensional structures of molecules 
were drawn using Hyperchem 7.0 software 
(14). The final geometries were optimized 
with the semi-empirical AM1 method in 
Hyperchem program. The geometries resulted 
were transferred into Dragon program 
package, developed by Milano Chemometrics 
and QSAR Group (15). MATLAB software 
was used for the PLS regression method and 
genetic algorithm.  
 
Partition coefficient data and descriptor 
generation 

The data used in this study were log po/w of 
some 3-hydroxy pyridine-4-one derivatives 
(internal unpublished data). The structural 
features of these compounds are listed in Table 
1. They were used for subsequent QSPR 
analysis as independent variables.  

A large number of molecular descriptors 
was calculated using Dragon package. The 
Dragon software calculated different 
functional groups, topological, geometrical 
and constitutional descriptors for each 
molecule. The calculated descriptors for each 
molecule are summarized in Table 2. 
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Table 1. Chemical structures of compounds used. 
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Table 1.(Continued) 
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Table 2. Brief description of some descriptors used in this study. 
Descriptor type Molecular Description 

Constitutional 

Molecular weight, no. of atoms, no. of non-H atoms, no. of bonds, no. of heteroatoms, no. of multiple 
bonds (nBM), no. of aromatic bonds, no. of functional groups (hydroxyl, amine, aldehyde, carbonyl, 
nitro, nitroso, etc.), no. of rings, no. of circuits, no of H-bond donors, no of H-bond acceptors, no. of 
Nitrogen atoms (nN), chemical composition, sum of Kier-Hall electrotopological states (Ss), mean 
atomic polarizability (Mp), number of rotable bonds (RBN), mean atomic Sanderson electronegativity 
(Me), etc.  

Topological 

Molecular size index, molecular connectivity indices (X1A, X4A, X2v, X1Av, X2Av, X3Av, X4Av), 
Average connectivity  index of chi-2 (X2A), information content index (IC), Kier Shape indices, total 
walk count, path/walk-Randic shape indices (PW3, PW4, Zagreb indices, Schultz indices, Balaban J 
index (such as MSD) Wiener indices, topological charge indices, Sum of topological distances between 
F..F (T(F..F)), Ratio of multiple path count to path counts (PCR), Mean information content vertex 
degree magnitude (IVDM), Eigenvalue sum of Z weighted distance matrix (SEigZ), reciprocal hyper-
detour index (Rww), Eigenvalue coefficient sum from adjacency matrix (VEA1), radial centric 
information index, 2D petijean shape index (PJI2), Kier flexibility index (PHI), Bond information 
content(neighborhood symmetry of 4-order (BIC4), etc. 

Geometrical 
3D petijean shape index (PJI3), Gravitational index, Balaban index, Wiener index, etc. Maximal 
electrotopological negative variation (MAXDN), Maximal electrotopological ppositive variation 
(MAXDP), Asphericity (ASP). 

Functional groups 
Number of total tertiary carbons (nCt), Number of H-bond acceptor atoms (nHAcc), number of total 
hydroxyl groups (nOH), number of unsubstituted aromatic C(nCaH), number of ethers (aromatic) 
(nRORPh), Number of primary amide (binding to aromatic ring) (nCONH2ph),etc. 

 
Partial least square (PLS) 

PLS is a regression approach which is used 
to build a predictive model between two 
matrices of variables: the X matrix of predictor 
variables and the Y matrix of dependent 
variables. In its simplest type of model 
building, a linear model indicates the 

relationship between dependent (bioactivity) 
variables and independent (descriptors) 
variables by means of latent variables (LVs). 

In the PLS regression, it is assumed that X 
matrix (I × J) contains the descriptors that can 
be used for predicting the matrix of activities 
that is Y (I × M). Here the dependent variables 



Prediction of partition coefficient of 3-hydroxy pyridine derivatives 

147 

are represented by an (I × 1) column vector. 
PLS decomposes these matrices into a two-
matrix product plus residual.  

+E                     (1) 
+E                    (2) 

where, T and U are the matrices of score for 
X and Y; P and Q are the matrices of loadings 
for X, Y; E and F are the matrices residual, 
respectively, for a model with f latent 
variables. 

Above equations are solved in a way to 
maximize the covariance between T and U. 
These two matrices are related by the 
following inner relationship. 

                                          (3) 

where, B is a diagonal matrix and H is a 
residual matrix. This allows PLS to be 
expressed as a predictive model. The matrix Y 
can be calculated from U as follows: 

                                       (4) 

The activity of the new compounds can be 
approximated from the new scores T*, which 
are substituted in the above equation, leading 
to the following equation: 

                                     (5) 

In order to find the optimum number              
of latent variables to be used in model 
building, a leave-one-out cross validation was 
carried out (16). 

 

RESULTS 
 

Principal component analysis 
QSPR using a univariate approach is not 

always a robust strategy. For instance, even if 
significant differences in the values of given 
descriptor was found, constructing the QSPR 
models based on only these descriptors would 
not be robust enough and the chances of 
misregressions would be very high. More 
powerful and robust methods might be 
developed by using the full compositional data 
(multivariate approach) instead of looking at the 
individual descriptors data (univariate approach). 
The main reason for this is that by using the full 
composition, more information is considered 
and, thus, the chances of wrong identifications 
decrease (17). Thus, multivariate statistics was 
used as a tool to reveal whether there was a 
specific descriptor pattern for each molecule. 
PCA was conducted on the crude data of the 
30 molecules. The data matrix consisted of 30 
rows (molecules) and 10 descriptors (selected by 
GA). The PCA scores plot revealed two outlying 
molecules (19 and 20). As shown in Fig. 1, 
these molecules are distinctly apart from other 
molecules. Further studies for considering 
these two molecules as outliers are discussed 
in following section. PCA on the descriptors 
data revealedthat there is no natural clustering 
(Fig. 1). The first three PCA factors together 
explained 96.9% of the variance in the data 
set. This clustering was more or less in 
agreement with the structure of molecules. 

 

Fig. 1. First three factors of the PCA scores plot on the descriptors calculated.  
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Genetic algorithm-partial least squares  
PLS is a multivariate regression technique 

which involves a two-step procedure: (1) 
model formation, where the relation between 
descriptors and reference bioactivities is 
established from a set of training molecules and 
(2) prediction, in which the model formation 
results are employed to estimate the bioactivities 
in unknown molecules (18). 

In the PLS-1 algorithm version, all model 
parameters are optimized for the each molecule 
at a time. During the model formation step, the 
training data are decomposed by an iterative 
algorithm, which correlates the data with the 
training bioactivities using a so-called ‘inverse’ 
model (19). This provides a set of regression 
coefficients to be used to a new molecule. 
Before training, however, the optimum number 
of latent variables A should be selected in order 
to avoid overfitting by applying the cross-
validation method described by Haaland and 
Thomas (19). The PLS-1 method is well 
known, and details on its implementation are 
easily available (18) and (19). 

Before running the PLS-1, in order to find 
the more convenient set of descriptors, genetic 
algorithm was used. To do so, many different 
GA-PLS runs were conducted using different 
initial sets of populations.  

The data set was divided into two groups: 
training set (n=24) and prediction set (n=6). 
Given 24 training molecules, PLS gives nine 
significant LVs (the percent of variance 
explained >0.01) which can explain around 
99% of the variances in the original 
descriptors data matrices. Four LVs are 
reported in Table 3. 

In this Table, the percent of variances was 
explained by each LVs and the cumulative percent of variances are represented.  

explained by each LVs and the cumulative 
percent of variances are represented. 

Therefore, we restricted the next studies to 
the selection of best subset of these LVs to 
perform regression between descriptors and 
log Po/w. 

After dividing the molecules into two parts, 
calibration and validation sets, based on 
Kennard and Stone algorithm (20), building of 
regression model using calibration set was 
carried out. 

The predicted log Po/w valuesusing PLS 
regression technique are listed in Table 4 and 
are plotted in Fig. 2. The plot of Fig. 2 shows 
that the data are distributed around a straight 
line with the respective slope equal to 0.907. 

As it can be seen from Table 5, the QSAR 
model based on PLS possess a high statistical 
quality. It could respectively explain and 
predict 98% and 99% of variances in log Po/w 
of the investigated compounds. The pre-
dictability of the generated PLS-based QSPR 
model was estimated according to Tropsha and 
coworkers (21) and Roy and coworkers (22) 
recommended criteria (Table 5). The results of 
LOO-CV technique applied on the training set 
are reported in Table 5. This results showed 
that generated PLS model is a reasonable 
QSPR model. These results confirm the 
success of calculated descriptors in modeling 
of the partition coefficent of the studied 
compounds. The value of R2 for test set is 
reported in Table 5. The data revealed that the 
proposed model has high prediction ability for 
the prediction set. The proposed regression 
models passed all the Tropsha tests for the 
predictive ability. Values of these quantities are 
shown in Table 5. 

 

 

Fig. 2. Correlation between the experimentally measured and the predicted values of Y for the training and test sets of 
30 compounds. The fitted linear regression is shown by dotted line. 
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Table 3. The results of PLS on the total calculated descriptors. 
Latent variable % Variance explained Cumulative % 

1 79.76 79.76 
2 12.67 92.43 
3 3.95 96.39 
4 1.38 97.77 
5 0.29 98.07 
6 1.39 99.47 
7 0.24 99.71 
8 0.24 99.95 
9 0.04 99.99 

 
Table 4. The experimental log Po/w and the predicted values of the molecules studied. 

Compound (No.) Log Po/w observed Log Po/w calculated (PLS) Relative error 
1 3.87 3.65 -0.06 
2 4.01 3.89 -0.03 
3 1.78 1.91 0.07 
4 4.32 4.54 0.05 
5 2.69 2.48 -0.08 
6 1.62 1.60 -0.01 
7 3.98 4.21 0.06 
8 3.95 3.75 -0.05 
9 3.24 3.32 0.03 

10 2.58 2.81 0.09 
11 3.01 2.78 -0.08 
12 0.77 0.75 -0.03 
13 0.78 0.61 -0.22 
14 2.6 2.62 0.01 
15 -1.78 -1.63 -0.08 
16 1.20 0.96 -0.20 
17 1.59 1.66 0.04 
18 3.80 3.88 0.02 
20 1.27 1.37 0.08 
21 1.40 1.22 -0.13 
22 1.90 1.59 -0.16 
23 -1.18 -1.16 -0.01 
24 1.34 1.54 0.15 
25 0.85 1.24 0.46 
26 3.87 3.65 -0.06 
27 4.01 3.89 -0.03 
28 1.78 1.91 0.07 
29 4.32 4.54 0.05 
30 2.69 2.48 -0.08 

 
Table 5. Statistics parameters and figures of merits of developed GA-PLS model. 

Parameter PLS Model 
Statistics Training Set Test Set 
N 24 6 
R2 0.985 0.990 
RMSE 0.220 0.129 
PRESS 2.830 0.101 
R2

LOOCV 0.857  
RMSELOOCV 0.204  
R2

L5OCV 0.841  
RMSEL5OCV 0.219  
R2-R0

2/R2 -0.014 -0.005 
R2-R'02/R2 -0.014 -0.005 
k 0.999 1.029 
k' 0.995 0.969 
Rm

2 0.868 0.917 
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DISCUSSION 
 

To solve the problem of multicollinearity in 
the generated descriptors, PLS regression as a 
linear method was used to model structure-log 
Po/w relationships quantitatively. All the 
calculated descriptors were used in the 
modeling procedure.  

The PLS method is a multivariate 
regression approach that projects the input–
output data down in to a latent space, 
extracting a number of principal factors with 
an orthogonal structure, while capturing most 
of the variance in the original data. PLS 
derives its usefulness from its ability to 
analyze data with strongly collinear, noisy and 
numerous variables in the predictor matrix X 
and responses Y (23) and (24). Both the linear 
and non-linear PLS methods have successfully 
been applied to predict the dependent 
variable(s) through modeling the input–output 
relationship in the data (25) and (26). 

There are several tools to estimate and 
calculate the accuracy, the validity of the 
proposed QSPR model and the impacts of the 
preprocessing steps. Here, we have employed 
several techniques to ensure the effectiveness 
of the PLS in the modeling of log Po/w of 
studied compounds. Some of the common 
parameters used for checking the predictability 
of proposed PLS model are root mean square 
error (RMSE), square of the correlation 
coefficient (R2), and predictive residual error 
sum of squares (PRESS). These parameters 
were calculated as follows: 

                     (6) 
            (7) 
                             (8) 

where, yi  is the measured bioactivity of the 
investigated compound i,  represents the 
calculated bioactivity of the compound i, is 
the mean of true activity in the studied set, and 
n is the total number of molecules used in the 
studied sets. 

The efficacy of QSPR models is not just 
their capability to regenerate known data, but 
also they should have talent to generate a good 
estimation for any external data (27). The 
predictabilities of developed models are 
powerfully influenced by the overfitting 

problem. Overfitting problem is occurred when 
uninformative regressions enter to the 
developed QSAR model. Another reason of 
overfitting problem is the use of exceeded 
number of LVs in PLS model. There are 
several techniques to approximate the quality 
and accuracy of the QSAR models (28). Cross-
validation is the most regularly employed 
validation techniques (29). Consequently, to 
examine the predictability and to check 
overfitting problem in the resulting PLS model, 
the leave-one-out cross-validation procedure 
was employed. The squared correlation 
coefficient for cross-validation (R2CV) was 
then calculated by the following equation.  

                          (9) 

where, PRESS and SSD are the predicted 
residual sum of squares and the sum of the 
squared deviation from the mean, respectively.  

For a generated QSAR model, internal 
validation (including leave-one-out cross 
validation), although significant and essential, 
does not adequately assure the predictability of 
a developed model. In fact, it is insisted that 
models with high apparent predictive ability 
which is highlighted only by internal 
validation methods cannot be predictive when 
applied on new compounds which not 
employed in developing the model.  

Thus, for a stronger estimation of the 
application of developed model for prediction 
on new chemicals, external validation of the 
models should always be carried out(21). To 
complete the study with regards to the 
predictability of the generated model, the 
proposed PLS must be used to predict the 
activity of ten molecules that did not employ 
in the modeling step (the testing set 
compounds). This predictive ability is 
estimated by the external R2p (R2 for test set) 
that is defined as follows:(30): 

                           (10) 

where, ty  is the average value of the 
bioactivity for the training set. The 
summations cover all the molecules in the 
testing set.  

Some criteria are suggested by Tropsha 
(21). If these criteria were satisfied then it 
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could be concluded that the model is 
predictive (21). These criteria include: 

                                             (11) 
                                                 (12) 

                       (13) 
      (14) 

R2 is the correlation coefficient of 
regression between the predicted and observed 
activities of the compounds in training and test 
sets. 2

0R  is the correlation coefficients for 
regressions between predicted versus observed 
activities through the origin, 

2'
0R  is the 

correlation coefficients for regressions 
between observed versus predicted activities 
through the origin, and the slope of the 
regression lines through the origin are assigned 
by k and k ', respectively. Details of definitions 
of parameters such as 

2
0R , 

2'
0R , k and k' are 

presented in the literature (21). In addition, 
according to Roy and coworkers (22) the 
difference between values of 2

0R  and 2'
0R  must 

be studied and given importance. They 
suggested following modified R2 form: 

                  (15) 

If 
2
mR  value for given model is > 0.5, 

indicates good external predictability of the 
developed model.  
 
QSAR applicability domain 

The applicability of domain (AD) was 
explained by the Williams plot of standardized 
residuals versus leverage (Hat diagonal) values 
(hi). The leverage method for defining the AD 
has been explained in details in the literature 
(22). The leverage (h) value of a compound in 
the original independent variable space is 
defined as below: 

           (16) 

where, xi is the LV vector of the 
investigated compound and X is the model 
matrix derived from the training set LV values. 

The warning leverage value (h*) is defined 
as 3(K + 1)/n, where, K is the number of 
independent variables. When h value of a 
molecule is lower than h*, the probability of 
accordance between calculated and 
experimental values is as high as that of the 
molecules in the training set (31). A compound 
with hi>h* will reinforce the model if the 
compound is in the training set, but such a 
compound in the testing set implies that it is 
structurally distant from chemicals in the 
calibration set and its predicted data may be 
unreliable. However, this compound may not 
appear to be an outlier because its residuals 
may be low. Thus the leverage and the 
standardized residual should be used 
simultaneously for the description of the AD 
of the expanded model. 

It must be noted that the outliers are objects 
that emerge to break the pattern or grouping 
shown by the majority of the objects. Presence 
of outliers in the studied data set is more the 
rule than the exception for real world data. The 
reasons for outliers are different, such as 
instrument failure, non-representative sampling, 
formatting errors and observations stemming 
from other populations. Most usual multivariate 
regression techniques are sensitive to outliers 
because of the fact that they are based on least 
squares or similar criteria where even one 
outlier can have an illogically large effect on 
the accuracy of developed model and decline 
the model.  

Therefore, it is essential to (a) recognize 
outliers and (b) make a decision whether the 
outliers should be included or omitted in the 
modeling step. 

 

Fig.  3. William's plot of generated PLS-based QSPR model. 
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Applicability of domain for the developed 
PLS model is shown in Fig. 3. Response 
outliers are compounds that have standard 
residual points greater than the two standard 
deviation units. Influential compounds are 
points with leverage value higher than the 
warning leverage limit. As can be seen in Fig. 
3 all studied molecules in training and test sets 
lie in application domain of developed model. 

 
CONCLUSION 

 
QSPR studies are an important tool for 

research and knowledge of chemical 
compounds and it has been frequently used in 
medicinal chemistry and molecular design to 
investigate new drugs. It is especially useful 
when the experimental determination of 
properties is very complex, the handling 

of materials may involve some risk, or 
determinations may not be easy in cases where 
compounds can quickly degrade. 

Quantitative relationships between molecular 
structure and log po/w data of a series of 3-
hydroxypyridine-4-one derivatives were 
discovered by a chemometric method, GA-
PLS. The results revealed the significant role 
of constitutional parameters in the partition 
coefficient of the studied compounds. As it is 
observed, the plot of data resulted by GA-PLS 
represents the low scattering, and the impact of 
constitutional descriptors was high. Since the 
QSPR study was carried out on the basis of 
theoretical descriptors completely calculated 
from molecular structure, the proposed model 
could potentially provide useful information 
about the log po/w of the compounds studied. 
Various tests and criteria such as leave-one-out 
cross validation, leave-many-out cross 
validation, and also criteria suggested by 
Tropsha were employed to examine the 
predictability and robustness of the developed 
model. This model could explain and predict 98 
% and 99 % of variances in the p logp data, 
respectively. 
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