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Abstract 

 
Quantitative relationships between structures of twenty six of 2-mercaptoimidazoles as C-C chemokine 
receptor type 2 (CCR2) inhibitors were assessed. Modeling of the biological activities of compounds of 
interest as a function of molecular structures was established by means of genetic algorithm multivariate 
linear regression (GA-MLR) and genetic algorithm (GA-ANN). The results showed that, the pIC50 values 
calculated by GA-ANN are in good agreement with the experimental data, and the performance of the 
artificial neural networks regression model is superior to the multivariate linear regression-based (MLR) 
model. With respect to the obtained results, it can be deduced that there is a non-linear relationship between 
the pIC50s and the calculated structural descriptors of the 2-mercaptoimidazoles. The obtained models were 
able to describe about 78% and 93% of the variance in the experimental activity of molecules in training set, 
respectively. The study provided a novel and effective approach for predicting biological activities of 2-
mercaptoimidazole derivatives as CCR2 inhibitors and disclosed that combined genetic algorithm and GA-
ANN can be used as a powerful chemometric tools for quantitative structure activity relationship (QSAR) 
studies. 
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INTRODUCTION 

 
Chemokines or chemotactic cytokines are a 

large group of small (~ 8-15 kDa) proteins that 
relate to each other structurally and functionally 
and insert a significant function in leukocyte 
migration and activation (1-5). Chemokines 
mediate their influences through activation of 
particular proteins in surface of the cells 
belonging to well-known seven transmembrane 
spanning G-protein coupled receptors family 
(GPCR). Monocyte chemoattractant protein 
(MCP-1/CCL2) is a part of the CC chemokine 
subgroup which is attached to the CC chemokine 
receptor 2 (CCR2) expressed on the greater 
number of blood born monocytes (6). 
Disturbance of the MCP-1/CCR2 route in 
rodent models of inflammatory and autoimmune 
diseases by genetic deletion of either MCP-1(7) 

or CCR2 (8-10) and use of peptidyl CCR2 
antagonists (11) or anti-MCP-1 antibodies (12) 
propose that inhibition of CCR2 may supply 
possible therapies for a variety of sicknesses 
including rheumatoid arthritis (11,12) multiple 
sclerosis (13-15) and atherosclerosis (10, 16-18). 
These outlooks have stimulated the search for 
small molecule MCP-1/CCR2 antagonists in a 
large number of research laboratories (19). 
Lately, quantitative structure activity relation-
ships (QSARs) have been employed widely to 
generate models in order to calculate and 
predict biological or toxicological values of 
drug candidate compounds using computa-tional 
descriptors solely extracted from molecular 
structure.  

For the first time, McCulloch and Pitts (20) 
proposed artificial neural networks (ANN) as a 
technique of data mining employing a neural 
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network’s information processing units 
(neurons) as centers of data analyzing that are 
organized in layers. An ANN is a tool for 
processing the input information. ANN is built 
based on the structure and function of the 
human brain as a template. Central nervous 
system of human is consisted of a series of 
neurons interconnected to each other by 
synapses. Information transfer between these 
neurons via a series of action potentials has 
been proved by scientists (21). Various ANN 
algorithms have advantages such as adaptive 
learning behavior, capability of parallel 
distributed processing and good generalization 
property for unseen data. 

The ANN method has several benefits over 
traditional regression methods, since they need 
known input data set without any suppositions 
(22). The ANN generates a mapping of the input 
and output variables, which can afterwards be 
employed to predict wanted output as a function 
of appropriate inputs (23). A multi layer neural 
network can estimate any smooth and 
measurable relationship between input and 
output vectors by optimizing a fitted set of 
connecting weights and transfer functions (22). 
ANN models could describe any nonlinear 
relationship between calculated descriptors of 
drug like compounds and their bioactivities 
(24,25). Therefore; it is more desirable to 

apply a non parametric method such as feed 
forward back propagation neural network QSAR 
modeling to characterize such a nonlinear 
relationship (26).  

Here we describe multiple linear regressions 
(MLR) as a linear method and back propagation 
ANN as a nonlinear technique for investigating 
of the relationship between the structure and 
the CCR2 antagonist activity of some                  
2- mercaptoimidazoles compounds. We further 
make a comparison between the two different 
methods to verify their efficacy in modeling in 
the inhibitory activity of the studied compounds. 

 
MATERIALS AND METHODS 

 
Computer hardware, software and preparation 
of data set 

All calculations were run on a desktop 
computer with Windows XP operating system. 
Bioactivities of 26 C-C chemokine receptor 
type 2 (CCR2) antagonists were taken from the 
literature (27), and are presented in Table 1. 
These values were converted from IC50 to 
pIC50 (-logarithm of IC50). The two-
dimensional structures of molecules were 
drawn by Hyperchem 7.0 software. The 
ultimate conformations were calculated with 
the semi-empirical AM1 technique. 

Table 1. Structures of some 2-mercaptoimidazoles as CCR2 Inhibitors used in this study 
 

 
 

pIC50 X R2 R1 Compound 
6.7 H 4-Cl 3-Cl 1 
5.9 H 4-F 3-F 2 
6.6 H 4-Br 3-Br 3 
5.7 H 4-CF3 3-F 4 
6 H 4-F 3-CF3 5 
8 COOCH3 4-Cl 3-Cl 6 
8 COOCH3 4-F 3-F 7 

7.7 COOCH3 4-CF3 3-F 8 
7 COOCH3 4-F 3-CF3 9 

6.6 CH3 4-Cl 3-Cl 10 

 

N

N
X

COOCH3HS

R2

R1
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pIC50 R2 R1 Compound 
6.6 Methyl H 11 

6.8 Propyl H 12 

5.7 H 13 

6.5 H 14 

5 Cyclohexyl H 15 

 

 

 
 

pIC50 Y X R Compound 
7.3 H CONH2 Cl 16 
6.5 H CONHCH3 Cl 17 
6.2 H CN Cl 18 
6.5 H COOEt F 19 
6.5 H COOi-Prop Cl 20 
6.3 H CONH2 F 21 
5.7 H CONHCH3 F 22 
6.4 CONHCH3 CONHCH3 Cl 23 
7.2 CONH2 CONH2 Cl 24 
6.9 CONH2 CN Cl 25 
7.4 COOCH3 CN Cl 26 

 
The molecular structures were optimized 

using the Polak-Ribiere algorithm until the 
root mean square gradient was 0.01 kcal mol-1. 
The z-matrix of structures was provided by the 
Hyperchem and transferred to the Gaussian 98 
program (28). Whole conformation optimiz-
ation was carried out taking the most extended 
conformation as starting geometries. Semi 
empirical molecular orbital calculation (AM1) 
of the structures was preformed again to avoid 
trapping in local minimal using Gaussian 98 
program. The obtained conformation was 

relocated to Dragon program package, which 
was developed by Milano Chemometrics and 
QSAR Group (29).  Dragon software was 
employed to calculate a large number of 
descriptors including geometrical, topological, 
functional group and constitutional. The name 
and number of calculated descriptors are listed 
in Table 2. After calculation of descriptors, in 
the preprocessing step, the estimated descriptors 
were investigated for descriptors that have 
constant values for all studied molecules and 
those discerned were deleted from data matrix.

R1

N

N

HS

R2

Cl

Cl

O

O
CH3

O

N

N
Y

XHS

R

R

Table 1. (Continued) 
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Table 2. Short description of some descriptors used in this study including their name and number. 

Number of 
calculated descriptor Molecular description Type of descriptor 

32 

Mean atomic van der Waals volume (Mv) (scaled on Carbon 
atom), no. of heteroatoms, no. of multiple bonds (nBM), no. 
of rings, no. of  circuits, no of H-bond  donors, no of H-bond 
acceptors, no. of Nitrogen atoms (nN), chemical  
composition, sum of Kier-Hall 
electrotopological states (Ss), mean atomic polarizability 
(Mp), number of rotable bonds (RBN) mean atomic 
Sanderson electronegativity (Me), etc. 

Constitutional 

231 

Narumi harmonic topological index (HNar), total structure 
connectivity index (Xt), information content index (IC), 
mean information content on the distance degree equality 
(IDDE), total walkcount, path/walk-Randic shape indices 
(PW3, PW4, PW5, Zagreb indices, Schultz indices, 
Balaban J index (such as MSD) Wiener indices, Information 
content index (neighborhood 
symmetry of 2-order) (IC2), ratio of multiple path count to 
path counts (PCR), Lovasz-Pelikan index (leading 
eigenvalue) (LP1), total information content index 
(neighborhood symmetry of 1 - 
order) (TIC1), reciprocal hyper-detour index (Rww), Average 
connectivity index chi-5 (X5A (,  
piID (conventional bond-order ID number), etc. 

Topological 

39 
3D Petijean shape index (PJI3),  asphericity (ASP), 
gravitational index, Balaban index, Wiener index, length-to-
breadth ratio by WHIM (L/Bw), etc. 

Geometrical 

17 

Number of total secondary C(sp3) (nCs), number of total 
tertiary carbons (nCt), number of H bond acceptor atoms 
(nHAcc), number of secondary amides (aliphatic) 
(nCONHR), number of unsubstituted aromatic C (nCaH), 
number of ethers (aromatic) (nRORPh), number of ketones  
)aliphatic) (nCO), number of tertiary amines  (aliphatic) 
(nNR2), number of phenols (nOHPh), number of total 
primary C(sp3) (nCp), etc. 

Functional 
group 

 
To reduce the redundancy existed in the 

calculated descriptors, the correlation among 
descriptors and with the bioactivity of the 
molecules was checked and collinear 
descriptors (i.e. R2 > 0.90) were detected. 
Among the collinear descriptors, one with the 
highest correlation with bioactivity kept for 
model building phase and the others were 
removed.  

MATLAB software (version 7.1 Math 
Work Inc.) was used for developing  some 
scripts to perform ANN regression modeling 
and model validation.  

The data set was split into a training set and 
a prediction set using Kenard and Stones 
algorithm (30). According to Tropsha the best 
models would be built when this algorithm 
was used (31). The training set of 21 
molecules was employed to adjust the 
parameters of the developed QSAR models, 
and the test set of 5 compounds was employed 
to assess its prediction capability.  

Feature selection using genetic algorithm 
Where the number of independent variables 

is more than investigated molecules, feature 
selection is necessary for avoiding chance 
correlation and selecting the most informative 
descriptors. However, selecting the sufficient 
and informative descriptors for biological 
activity in QSAR studies is not easy because 
there are no universal rules that manage this 
selection. Genetic algotrithm (GA) is one of 
the best methods to feature selection in model 
building. The GA used here was demonstrated 
in other literature (33) and does not present for 
brevity. 
 
Multiple linear regression 

The general purpose of multivariate linear 
regressions (MLR) is to quantify the 
relationship between several independent or 
predictor variables and a dependent variable. 
Independent or predictor variables could be 
various physicochemical descriptors of 
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molecules, their principle components or latent 
variables. After building the model, the 
activity value of each ligand would then be 
calculated using the developed model. A multi 
linear model can be represented as: 

y= a0 + a1x1 + a2x2 + a3x3 +…+ anxn + β   (1) 

where n is the number of independent 
variables, a1,..., an denote the regression 
coefficients, β is the error and y is the 
dependent variable. Regression coefficients 
signify the independent contributions of each 
molecular descriptor.  
 
Artificial neural networks  

An itemized explanation of the theory 
behind ANN has been sufficiently explained 
elsewhere (34-36). The pertinent rule of 
supervised learning in an ANN is that it 
obtains numerical types inputs (the training 
data) and conveys them into preferred outputs. 
The input and output neurons may be joined to 
the ‘external world’ and to other neurons 
inside the artificial network. The method in 
which each neuron conveys its input is 
dependent on the so called weights and bias of 
the neurons, which are adjustable. The output 
values of each neuron rely on both the weight 
strengths and bias values. Also, the outputs 
depend on the weighted sum of all its inputs 
which are usually conveyed using a nonlinear 
weighting function. For the at hand goals, the 
big strength of ANNs systems arise from this 
fact that it is conceivable to train this systems. 
Training is carried out through successively 
introducing the networks with certain inputs 
and outputs and adjusting the connection 
weights and biases between the individual 
neurons. This procedure is corroborated until 
the output neurons of the network match the 
preferred outputs to a desired degree of 
accuracy. Though, training can be carried out 
by using the back propagation algorithm. In 
order to train the network using this algorithm, 
the differences between the ANNs output and 
its preferred output are estimated after each 
epoch. The changes in the values of the 
weights can be calculated by using following 
equation: 
 

        (2)  

where, w∆  is the change in the values of 
weights for each network neuron, iδ is the 
actual error of neuron i, and Oj is the output of 
neuron j. The coefficients η and α are the 
learning rate and the momentum factor, 
respectively. These coefficients manage the 
velocity and the efficacy of the learning 
course. These parameters would be optimized 
before training the network. Equation like 
Equation (2) can be employed for the bias 
settings. 

The ANN can apply qualitative as well as 
quantitative inputs, and it does not need an 
unambiguous relationship connecting the 
inputs and the outputs. Though in statistics the 
analysis is limited to a known number of 
possible interactions, more expressions can be 
checked for interactions by the ANNs. In 
addition, by permitting more information to be 
analyzed at the same time, more complicated 
and delicate interactions can be investigated 
using this method. 
 
Validation of QSAR models 

Some of common parameters used for 
checking predictability of proposed models are 
root mean square error (RMSE), square  of  the  
correlation coefficient (R2),  an predictive 
residual error sum of squares (PRESS). These 
parameters were calculated for each model as 
follows:    

2
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where, yi  is the true bioactivity of the 
investigated compound i , iŷ  represents the 
calculated bioactivity of the compound i, x the 
mean of true activity in the studied set, and n 
the total number of molecules used in the 
studied sets.  

The value of R2 can be usually raised by 
adding the additional independent variables to 
the generated model, even if the added 
independent variable does not cause to the 
decrease of the unexplained variance of the 
dependent variable. Consequently, the use of )1()( −∆+=∆ nwOnw ijjiij αηδ
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needs particular consideration. Hence, it is 
better to employ another statistics, known as 
adjusted R2 ( 2

adjR ) in association with R2. 2
adjR  

can be calculated using following equation: 

)
1

1)(1(1 22

−−
−

−−=
pn

nRRadj                      (6) 

where, n is the number of molecules in studied 
data set and p is the number of independent 
variables in generated model. 
The actual efficacy of generated QSAR 
models is not just their capability to reproduce 
known data that is confirmed by their fitting 
power (R2), but is chiefly their feasibility of 
predictive application. Hence, the QSAR 
model estimations were carried out 
maximizing the explained variance in 
prediction, assigned by the leave-one-out 
cross-validated correlation coefficient, Q2. 

Also, the predictive ability of the regression 
model generated on the training set molecules 
is estimated on the predictions of test set 
compounds, by the external R2

p defined as 
follows (37):  
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Where, ty  the averaged value of the 
bioactivity for the training set; the summations 
cover all the molecules in the test set. 

An accepted technique employed by 
researchers to defend their generated models 
against the danger of chance correlation 
between dependent and independent variables 
has been y-randomization that is., fortuitous 
correlation without any predictability for 
developed  model. Y randomization is a 
method that is said to be “probably the most 
powerful validation procedure” (39).  
 
Applicability domain of the model 

The presence of response outliers (i.e. 
molecules with standardized residuals greater 
than two standard deviation units) in the 
investigated data set and compounds very 
effective in determining figures of merit and 
statistical parameters of developed model [i.e. 

molecules with high leverage value (h) greater 
than nk /3 ′  where k' is the number of model 
variables plus one, and n the number of the 
molecules applied in model development] 
were confirmed by the Williams plot (38). 

 
RESULTS 

 
The structures of 26 molecules were built 

and optimized and a large number of 
descriptors (columns of X block) were 
estimated for each molecule using its 
molecular structure. In order to obtain the 
relationship between the biological activities 
as dependent and molecular structures as 
independent variables, logarithms of the 
inverse of biological activity (log 1/IC50) of 26 
molecules were used. After dividing the 
molecules into calibration and validation sets, 
based on Kennard and Stones algorithm, 
different models using training set were built. 
Developed models were used to predict the 
activity of molecules in test set to evaluate the 
performance of models.   

To determine the degree of homogeneities 
in the original data set and recognize potential 
clusters in the studied molecules, principle 
component analysis (PCA) was performed 
within the calculated pixels space for all of the 
molecules. PCA is a valuable multivariate 
statistical approach in which new orthogonal 
variables called principal components or PCs 
are derived as linear combinations of the 
original variables. These new generated 
variables are sorted on the basis of information 
content (i.e. explained variance of the original 
dataset). Priority of PCs demonstrates their 
higher quota in the explained variance, so most 
of the information is retained in the early few 
PCs. A main characteristic in PCA is that the 
generated PCs are uncorrelated. PCs can be 
used to obtain scores which present most of 
the original variations in the original data set 
in a smaller number of dimensions.  

Here, using three more significant PCs 
(eigenvalues>1), which explain 77.57 % of the 
variation in the data (56.74 %, 12.74 %  and 
8.09%, respectively) distribution of molecules 
over the three first principal components is 
shown in Fig.1. As can be seen in this figure, 
no cluster exists in dataset.   
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Fig. 1.  Principal components analysis of the calculated descriptors of all molecules in the data set. 
 
 
Table 3. The result of MLR analysis with different type of descriptors for training set molecules 

Number Descriptor class MLR equation R2 Adjusted R2 S.E. RMSECV Q2 F 

1 Constitutional 
pIC50= -6.791 (±3.533)  + 
23.638 (±3.926) × RBF + 
12.061 (±4.651) × Mv 

0.681 0.644 0.476 0.507 0.886 18.187 

2 Topological 

pIC50= 3.384 (±2.205) + 
9.310 (±2.869) × JhteZ + 
0.046 (±0.015) × T(O..O) 
+ 10.349 (±4.205)  × J 

0.761 0.717 0.425 0.457 0.887 17.014 

3 Geometrical 
pIC50= 7.941 (±0.718) + 
0.119 (±0.023) × G 
(O..O) + 0.003 (±0.001) 
× DDI 

0.613 0.567 0.525 0.574 0.906 13.463 

4 Functional 
group 

pIC50= 10.117 (±0.859) - 
0.943 (±0.239) × nCaH - 
0.276 (±0.102) × NCRH2 

0.640 0.598 0.506 0.530 0.830 15.103 

 
After determination of homogeneity in 

dataset, models were built using training set. 
Before model building step, the pretreatment 
phase was carried out on pool of calculated 
descriptors. This pretreatment was begun with 
the deletion of constant descriptor for all 
molecules. Also for reduction of redundancy 
among retained descriptors, if two or more 
descriptors were highly correlated, only one 
descriptor with the highest correlation and 
dependent variable was picked and others were 
deleted. This pretreatment phase helps to 
accelerate the descriptor selection and 
decreases the probability of including 
unrelated descriptors in final model. 

Developed models were used to predict the 
activity of molecules in test set to evaluate the 
performance of the developed models. 

Dragon software was used for calculating 
four different classes of descriptors including 
constitutional, geometrical, topological, and 
functional group descriptors. The following 

procedure was employed to choose the most 
informative descriptors using the training set 
in each class. A certain MLR model was built 
with calculated descriptor of each class. The 
method for the selection of descriptor in 
developed model was a stepwise feature 
selection. The most significant molecular 
descriptors among the pool of calculated 
descriptors were identified using multiple 
linear regression analysis with a stepwise 
selection method.  The developed MLR model 
for each class and its statistical parameters 
were reported in Table 3.   

As can be seen in this Table, it was 
recognized that only 9 descriptors are enough 
to relate the bioactivity of investigated 
molecules to their structures. Table 4 shows 
the selected descriptors, their dentitions and 
classes. A number of the calculated descriptors 
estimated for each molecule encoded similar 
information about the molecule of interest. 
Hence, it was desirable to examine the pool of 
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Table 4. List of selected descriptors for each class, their dentitions by genetic algorithm. 
No. Descriptor name Definition Descriptor class
1 RBF Ratable Band Fraction Constitutional 
2 Mv Mean Atomic van der Waals volume (scaled on Carbon atom) Constitutional 
3 JhteZ Balaban type index from Z weighted distance matrix (Barysz matrix) Topological 
4 T (O..O) Sum of topological distances between O..O Topological 
5 J Balaban J index Topological 
6 G (O..O) Sum of geometrical distances between O..O Geometrical 
7 DDI D/D index Geometrical 
8 nCaH Number of unsubstituted aromatic C (sp2) Functional group 
9 NCrH2 Number of ring secondary C (SP3) Functional group 

 
 
Table 5. Correlation coefficient (R2) matrix for the descriptors selected by MLR in various classes. 

Descriptor name RBF Mv JhteZ T (O..O) J DDI G (O..O) nCaH nCrH2 
RBF 1.00         
Mv -0.38 1.00        
JhteZ 0.88 -0.13 1.00       
T (O..O) 0.69 -0.31 0.55 1.00      
J 0.90 -0.30 0.90 0.59 1.00     
DDI 0.38 -0.53 0.14 0.59 0.26 1.00    
G (O..O) 0.70 -0.32 0.57 0.90 0.60 0.62 1.00   
nCaH -0.67 0.07 -0.66 -0.63 -0.65 -0.53 -0.68 1.00  
nCrH2 -0.72 0.05 -0.80 -0.19 -0.74 0.32 -0.19 0.25 1.00 

 
 

 
 
Fig. 2. Standardized coefficient of descriptors appeared in GA-MLR. 

 
calculated descriptor and eliminate those 
which show high correlation with each other. 
Correlation coefficient (R2) descriptors matrix 
for the descriptors selected in various MLR 
equations is shown in Table 5. As you can see 
any descriptors correlated (R2 > 0.92) was 
assigned as criterion for correlated descriptor. 

The most significant molecular descriptors 
among the selected descriptors were identified 
using a genetic algorithm (GA) selection 
method. Then these descriptors selected by 
GA were used as input of multiple linear 
regression analysis. The best equation obtained 

for the pIC50 of the 2-mercaptoimidazoles 
derivatives was: 

 

pIC50= 3.847 (±2.165) + 9.562 (±2.773) × 
JhteZ + 0.062 (±0.021) × G(O..O) 
+10.894(±4.079) × J  
n = 21,        R2 = 0.778,         F = 18.741       (8) 

 

For evaluation of the predictability of the 
generated GA-MLR model, the optimized 
model was applied for prediction of pIC50 
values of all compounds in the calibration and 
prediction set. The calculated pIC50 for each 
molecule is summarized in Table 6. 
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Table 6. The experimental pIC50 and the predicted values of the studied molecules a. 
No. pIC50 observed pIC50 calculated (GA-MLR) RE (GA-MLR) pIC50 calculated (GA-ANN) RE (GA-ANN)
1* 6.7 6.49 -0.03 6.59 -0.02 
2 5.9 6.15 0.04 6.01 0.02 
3 6.6 6.70 0.01 6.42 -0.03 
4 5.7 6.16 0.08 6.01 0.05 
5 6 6.08 0.01 6.17 0.03 
6 8 7.87 -0.02 7.80 -0.03 
7 8 7.59 -0.05 7.45 -0.02 
8 7.7 7.51 -0.03 7.58 -0.02 
9 7 7.46 0.06 7.07 0.01 
10 6.6 6.56 -0.01 6.44 -0.03 
11* 6.6 6.72 0.02 6.47 -0.02 
12* 6.8 6.16 -0.10 6.92 0.02 
13 5.7 5.76 0.01 5.60 -0.02 
14 6.5 6.91 0.06 7.00 0.03 
15 5 5.04 0.01 5.09 0.02 
16 7.3 6.56 -0.11 7.15 -0.02 
17* 6.5 6.32 -0.03 6.64 0.02 
18 6.2 6.85 0.09 6.15 -0.01 
19 6.5 5.97 -0.09 6.52 0.00 
20 6.5 6.12 -0.06 6.49 0.00 
21 6.3 6.18 -0.02 6.47 0.03 
22 5.7 5.98 0.05 5.80 0.02 
23* 6.4 6.86 0.07 6.52 0.02 
24 7.2 7.10 -0.01 6.94 -0.04 
25 6.9 7.02 -0.05 6.75 -0.02 
26 7.4 6.49 -0.03 6.59 -0.03 

*Molecules assigned as test set by Kennard and Stones algorithm 
 
It must be noted that positive values in the 

regression coefficients indicate that the given 
descriptor contributes positively to the value of 
pIC50, whereas negative values indicate that 
the increase in the value of the descriptor lead 
to a decrease in the value of pIC50. Said 
another way, increasing JhteZ, G(O..O) and J 
will increase pIC50 of the investigated 2-
mercaptoimidazoles derivatives. The standar-
dized regression coefficient reveals the 
significance of an individual descriptor 
presented in the regression model. The 
increase in the absolute value of a coefficient, 
leads to an increase in the weight of the 
variable in the model. The effects of various 
descriptors on the biological activity are 
shown in Fig.2. As can be seen the effects of 
JhetZ and J as two topological indexes are 
more significant than the other appeared 
descriptor in final GA-MLR. Experimental 

versus predicted values of pIC50 for molecules, 
obtained by the GA-MLR modeling, is shown 
graphically in Fig. 3A. 

The statistical parameters calculated for the 
developed MLR model are presented in Table 
7. The correlation coefficient R2, Q2, and 
RMSE for the prediction set are 0.78, 0.89 and 
0.36, respectively. The chemical applicability 
domain of the developed GA-MLR model and 
the trustworthiness of the predictions are also 
confirmed by the leverage method. Values of 
leverage could be calculated for both training 
and test compounds. Calculating leverage for 
training set is useful for determining the 
compounds which influence the model in a 
way that they result in an unstable model. On 
the other hand calculating leverage for objects 
that were not used in model building (such as 
test set) is useful for assigning the applicability 
domain of the model.   
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Fig. 3. Plots of predicted activities versus experimental activities for (A) GA-MLR, and (B) GA-ANN. 
 
 

 
 

Fig. 4. Plot of standardized residuals versus leverage values (Williams plot) for (A) GA-MLR and, (B) GA-
ANN. The compounds included in the training and test sets, are denoted differently; the response outliers and 
structurally influential compounds, explained  in the text, are denoted using numbers. The horizontal lines are the 
2.0σ limit and the vertical one is the warning value of leverage (h* = 0.470). 
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In the Williams plot chemicals influential 
on the structural domain of the model, 
described by a hat value exceeding the 
threshold one (vertical line in Fig. 4A and 4B), 
can be demonstrated as compounds with 
unusual structural characteristics badly 
depicted in the training set, which could 
influence the calculated descriptors, selection 
for a better modeling of those chemicals. 
Outliers are compounds which their 
standardized residual values pass the threshold 
value (here, ±2σ, horizontal dashed line in Fig. 
4A and 4B) could be correlated with errors in 
the measured values of bioactivities. 
Consideration of Williams plot (Fig 5A) 
implies that there is no response outlier in 
investigated data set. Two molecules namely 
13 and 15 have a leverage value higher than 
warning leverage limit (0.476) but they have 
standard residual values between ± 2.0 
standard deviation units. Hence these 
molecules can be considered as influent in 
fitting performance of model but there are no 
strong reasons to consider them as outliers to 
delete from studied data set. Williams plot 
showed further the trustworthiness of the 
predictions from another side.  

In this nonlinear model, a network 
including a fully connected three layer, feed 
forward ANN model trained with a back 
propagation learning algorithm was used. GA–
ANN had an input layer including neurons 
with the number of descriptors selected as the 
input of model (3 neurons), a hidden layer of 
neurons in which the number of neurons must 
be optimized and also a transfer function, and 
a single neuron output layer corresponding to 
the activity vector that it's elements are 
calculated bioactivities of studied molecules 
by network. There are no exact theoretical 
principles for choosing the appropriate 
network topology, so before the training of 
network, the adjustable parameters such as 
number of nodes in the hidden layer, transfer 
function, learning rate and etc. were 
optimized. In order to evaluate the ANN, root 
mean square error of cross validation 
(RMSECV) was used. The values resulting 
from hidden layer are transferred to the last 
layer, which contains a single neuron 
representing the predicted activity. For output 

layer a linear transfer function was chosen. 
Also for hidden layer, a sigmoid transfer 
function, as a more flexible transfer function, 
was selected. 

To optimize the value of network 
parameters on performance of developed 
model, some various configurations of ANN 
with different values of neuron in hidden layer 
(nH= 2, 3, 4, 5,6,and 7), learning rate (from 0.1 
to 1) and momentum (from 0.1 to 1)  were 
built, and output of each network on the basis 
of RMSECV was evaluated. A special 
technique using response mesh plot was 
employed to optimize number of node in 
hidden layer, learning rate, and momentum. In 
Fig. 5, the mesh plots of output of developed 
model (on the basis of RMSECV) as a linear 
function of learning rate and momentum in six 
different numbers of nodes in hidden layer are 
shown. It must be noted that for inhibition of 
overfitting in the generated ANN model, the 
training of the network must be performed 
when the RMSECV of calculated activity by 
network is in the minimum value.  

The results show that 5 nodes in hidden 
layer, learning rate of 0.6 and momentum of 
0.1 are the optimum parameters of model. 
After optimization of pervious parameters, the 
number of iterations must be optimized. Fig. 6 
shows a plot of the RMSECV for training set 
versus the number of epochs which represents 
the estimation of the extent of training period. 
It can be seen from this figure that while 
training of network was performed for the 
training set; RMSECV initially decreases and 
then begins to increase after approximately 
1900 epochs. This position is commencing 
point of overtraining of network and then 1900 
iteration was chosen as the optimum number 
of epoch. The generated nonlinear model was 
then trained using the training set for 
optimization of the weights and biases. For 
estimate of the predictability of the generated 
ANN, a trained network was applied for 
prediction of the pIC50s values in the test set 
which were not used in the modeling step. The 
predicted activity of molecules calculated by 
GA-ANN is plotted against the experimental 
values in Fig. 3B and is reported in Table 6. 
As expected, the calculated values are in good 
agreement with experimental values. 
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Fig. 5. Mesh counter plots of output of GA-ANN (on the basis of RMSECV) to optimize networks parameters including 
linear rate, momentum, and number of hidden layer nodes (nH ) (A) nH = 2; (B) nH = 3; (C) nH = 4; (D) nH = 5; (E) nH = 
6; and (F) nH =7. 
 
 
 

 
 

Fig. 6. Plot of RMSECV for training set versus the number of iterations  
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Table 7. Statistical parameters obtained for the developed model for anti tubreculosis inhibitor activity of investigated 
compounds. 
Parameter    GA-MLR GA-ANN 
Data set  Training Set Test Set Training Set Test Set 
N 21 5 21 5 
R2 0.78 0.35 0.93 0.91 

RMSE 0.36 0.34 0.22 0.12 

PRESS 2.68 0.58 1.01 0.07 

Q2 0.89  0.78  

RMSECV 0.442  0.458  

PRESSCV 3.92  4.03  

N: Number of objects in data set, R2: Correlation coefficient of experimental and predicted activities, RMSE: Root 
mean square error, PRESS: Predicted error sum of square, R2

CV: Correlation coefficient of leave one out cross 
validation, RMSECV : Root mean square error of cross validation,  
PRESSCV : Predictive residual sum of square of cross validation 

 
 

Table 8. R2 and Q2 obtained in two models by Y randomization. 

Iteration 
GA-MLR  GA-ANN 

R2 Q2  R2 Q2 
1 0.12 0.13  0.20 0.07 
2 0.11 0.02  0.11 0.12 
3 0.05 0.16  0.12 0.16 
4 0.07 0.01  0.20 0.13 
5 0.11 0.15  0.05 0.12 
6 0.21 0.17  0.03 0.20 
7 0.15 0.24  0.06 0.05 
8 0.01 0.01  0.10 0.05 
9 0.09 0.03  0.08 0.09 
10 0.08 0.03  0.15 0.07 

 
Table 7 compares the results obtained using 

the GA–MLR and GA–ANN models. The R2, 
RMSE and PRESS of the models for training 
and test sets reveal the potential of the ANN 
model for prediction of pIC50s values of 
various 2-mercaptoimidazoles as CCR2 
inhibitors. 

RMSE and PRESS of 0.34 and 0.58 for the 
test set by the GA–MLR model should be 
compared with the values of 0.12 and 0.07 by 
the GA–ANN model. It can be seen from 
Table 7 that although parameters appearing in 
the GA–MLR model are used as inputs for the 
generated GA–ANN model, the statistics have 
shown a large improvement. These improve-
ments are because pIC50s values of 2-
mercaptoimidazoles reveal nonlinear correl-
ations with the selected descriptors by genetic 
algorithm. 

Same with GA-MLR, to better estimate the 
developed GA-ANN, the Williams plot was 
constructed to verify the presence of outliers 

and/or molecules with high influence on the 
results (Fig.4B). As discussed for GA-MLR 
leverage values and standardized residuals in 
prediction of activity of molecules are 
reported, respectively, on x and y axes. In this 
plot, reference lines are also reported both for 
leverage critical value (0.470) and for 
standardized residuals critical value (±2σ) 
Molecules with leverage greater than the 
critical value can be considered as objects with 
too much influence on the regression model. 

In the same manner, molecules with a 
standardized residual greater than the critical 
value are described by a poor prediction value. 
By examining the applicability domain of the 
GA-ANN from the Williams plot (Fig. 4B) it 
can be seen that neither of the molecules in the 
set is recognized as a response outlier based on 
the 2σ criterion for the total molecules. On the 
other hand, on the basis of leverage approach 
two compounds from the investigated 
molecules are recognized as structurally 
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influential chemicals: molecules 13 and 15. 
These results are same with GA-MLR model. 

In order to avoid chance correlations which 
are possible because of a large number of 
generated columns (independent variables), 
and examine the robustness of developed 
models, Y-randomization test has been applied 
to models. The dependent variable vector is 
randomly permuted and a new QSAR models 
is constructed using the original independent 
variable matrix. The new modeling was 
expected to have low R2 and Q2 values. For 
sureness, a number of iterations were carried 
out. If the results show high R2and Q2, it 
implies that an acceptable QSAR model 
cannot be obtained. Several random shuffles of 
the Y vector were performed on the generated 
models and the results are shown in Table 8. 
The low R2 and Q2 values show that the good 
results in our original model are not due to a 
chance correlation or structural dependence of 
the training set. 

 
DISCUSSION 

 
By interpreting the descriptors included in 

the model, it is possible to obtain valuable 
chemical insights into the biological activity. 
For this reason, a brief explanation of the three 
descriptors that were employed in the 
generated GA-MLR model is provided below. 
JhetZ is Balaban type index from Z weighted 
distance matrix and J is Balaban J index. Both 
JhetZ and J are belonging to topological 
descriptor class. Presence of these descriptors 
in the final MLR model, basically accounts for 
size, shape, and branching, thus steric 
contribution to biological activity. The 
structures of almost all 2-mercaptoimidazoles 
included in this QSAR study are very similar 
to each other. These structures have an 
imidazole ring in the center of molecule and 
three substituents in positions 1, 2, and 3 that 
more or less have similar structure. Therefore, 
appearing of the topological descriptors such 
as J and JhteZ in the model is not unusual. 
These topological descriptors encode the 
compactness and the degree of branching of a 
molecule. 

G(O..O) is sum of geometrical distance 
between two oxygen atoms in studied 
molecules. 

Because this descriptor belongs to the 
geometrical group of descriptors, some 
geometrical properties including angles 
between atoms, dihedrals angles, and atomic 
distances are probably important features in 
the effectiveness of these compounds as CCR2 
inhibitors. The variables appeared in the GA-
MLR model encode different aspects of 
topological and geometrical molecular 
structure. 

One of the most important reasons for this 
study is comparison of ability of linear QSAR 
model building methods (such as MLR) and 
non linear QSAR model building techniques 
(such as ANN) in predicting the inhibitory 
activity of some 2-mercaptoimidazoles as 
CCR2 inhibitors. To obtain robust and 
accurate models, the ANN models should be 
trained by subset of descriptors instead of all 
generated descriptors. 

As discussed above, a genetic algorithm 
technique was applied as a feature selection 
method to choose the most relevant subset of 
descriptors. Said another way, to find robust 
and predictable model, layered feed forward 
back propagation neural network model was 
trained with subsets of descriptors instead of 
all calculated descriptors.  

Therefore, an ANN model was developed 
by using the three descriptors appearing in the 
MLR model as its inputs. Since these 
descriptors were selected by GA, QSAR 
model was called GA-ANN.  

As a result, it was discovered that a 
correctly selected and trained neural network 
could reasonably represent the dependence of 
the CCR2 receptor inhibitory activities of 2-
mercaptoimidazoles on the descriptors. The 
optimized neural network could then simulate 
the complex nonlinear relationship between 
the pIC50s value and the descriptors. 

 
CONCLUSION 

 
QSAR were built for the CCR2 receptor 

inhibitory activity of some 2-
mercaptoimidazoles by using the GA–MLR 
and GA–ANN methods. Comparison of the 
GA–MLR and GA–ANN models reveal 
superiority of the GA–ANN model over the 
GA–MLR model. Because the improvement of 
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results acquired by using the non-linear 

model is substantial, it can be deduced there is 
a non-linear relationship between the pIC50s 
and the calculated structural descriptors of the 
2-mercaptoimidazoles. In the final models, 
importance of topological descriptors is 
considerable (including JhetZ and J). Presence 
of these descriptors in the final models, 
basically accounts for size, shape, and 
branching, thus steric contribution to 
biological activity. 
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