

Antispasmodic effect of osthole and *Prangos ferulacea* extract on rat uterus smooth muscle motility

H. Sadraei¹, Y. Shokoohinia², S. Sajjadi³, B. Ghadirian^{4,*}

¹Department of Pharmacology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.

²Department of Pharmacognosy and Biotechnology, School of Pharmacy, Kermanshah University of Medical Sciences, Iran

³Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.

Background and Aims: Several species of Prangos are traditionally used as emollient, carminative, tonic, anti-flatulent, anthelmintic and anti-thrombotic agents. Osthole, a coumarin isolated from Prangos, are believed to be responsible for its spasmolytic activity. However so far pharmacolgical activity of *Prangos ferulacea* extract has not been investigated on smooth muscles. Therefore the objective of this research was to investigate the effect of *P.s ferulacea* extract on rat isolated uteurs.

Methods: A day before experiment, rats were given 17- β -oestradiol (100 µg/kg, S.C.) and housed in a cage with free access to food and water at room temperature In this research, effects of *P. ferulacea* extract and osthole was investigated on rat isolated uterus contraction induced by KCl, acetylcholine (ACh), oxytocin and electrical field stimulation (EFS) and compared with atropine and salbutamol.

Results: *P. ferulacea* acetonic extract concentration-dependently relaxed uterine contraction induced by KCl ($IC_{50}=13 \pm 0.81 \ \mu g/ml$), ACh ($IC_{50}=12 \pm 1.38 \ \mu g/ml$), oxytocin ($IC_{50}=16 \pm 3.14 \ \mu g/ml$) and EFS ($IC_{50}=11 \pm 1.5 \ \mu g/ml$). However, the extract at lower concentration (2.5 $\mu g/ml$) potentiated the EFS response. Osthole only had inhibitory effect on rat uterus and its relaxant effect was observed at lower concentration in comparison with *P. ferulacea* extract. Osthole in a similar way inhibited the response to KCl ($IC_{50}=4 \pm 0.13 \ \mu g/ml$),

ACh (IC₅₀=4±0.8 µg/ml), oxytocin (IC₅₀=4±0.8 µg/ml) and EFS (IC₅₀=1±0.5 µg/ml). **Conclusions:** Our results demonstrated that osthole acted directly on uterus smooth muscle to induce

Conclusions: Our results demonstrated that osthole acted directly on uterus smooth muscle to induce relaxation, whereas *P. ferulacea* caused both contraction and relaxation of rat uterine smooth muscle. The relaxation of osthole might be mediated through Ca2+ channel blocking activity as it inhibited the response to KCl. Mechanisms other than Ca2+ channel blocking appeared to be responsible for ACh relaxation effect of osthole.

Keywords: Prangos ferulacea; Osthole; Uterus; EFS; KCl; ACh; Oxytocin