Determination of γ-terpinenes in *Bunium persicum* essential oil by voltammetric method using gold nanoparticles modified glassy carbon electrodes

M. Khayatkashani, M. Khayatkashani, E. Sajjadi, A. Ghannadi

Department of Pharmacognosy, Isfahan University of Medical Sciences, Isfahan, Iran
Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
Department of Pharmacognosy, Isfahan University of Medical Sciences, Isfahan, Iran

Background and Aims: Several analytical techniques for the determination of γ-terpinene in Bunium Persicum essential oil have been reported. In this study, a new method using a glassy carbon electrode modified with gold nanoparticles (GNPS/GCE) was developed and validated for determination of γ-terpinene, most abundant constituent of Bunium Persicum fruit essential oil.

Methods: The electrochemical behavior of γ-terpinene at the modified sensor was characterized by cyclic voltammetry, chronocoulometry, linear sweep voltammetry, differential pulse voltammetry and rotating disk electrode voltammetry.

Results: Electrochemical parameters such as the diffusion coefficient (D), electron transfer coefficient (α), electron transfer rate constant (k) and ionic exchange current density (iₒ) were determined for the oxidation of γ-terpinene on the surface of electrodes. The oxidation of γ-terpinene on the GNPs/GCE in acetonitrile (0.1 M LiClO₄) at a scan rate of 25 mV s⁻¹ were successfully conducted by differential pulse voltammetry. The peak current increased linearly with the concentration of γ-terpinene. The results show that the plot of peak current versus γ-terpinene concentration is linear in the range of 1.2×10⁻² M - 1×10⁻⁴ M. From the analysis of these data, we estimate that the detection limit of γ-terpinene is 5×10⁻⁵ M.

Conclusions: A new and selective method was developed for the measurement of γ-terpinene. This method was successfully applied to the determination of γ-terpinene in Bunium Persicum fruit essential oil.

Keywords: γ-terpinene; Gold nanoparticles; *Bunium Persicum*; Voltammetry methods